首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
The power conversion efficiencies (PCEs) of state‐of‐the‐art organic solar cells (OSCs) have increased to over 13%. However, the most commonly used solvents for making the solutions of photoactive materials and the coating methods used in laboratories are not adaptable for future practical production. Therefore, taking a solution‐coating method with environmentally friendly processing solvents into consideration is critical for the practical utilization of OSC technology. In this study, a highly efficient PBTA‐TF:IT‐M‐based device processed with environmentally friendly solvents, tetrahydrofuran/isopropyl alcohol (THF/IPA) and o‐xylene/1‐phenylnaphthalene, is fabricated; a high PCE of 13.1% can be achieved by adopting the spin‐coating method, which is the top result for OSCs. More importantly, a blade‐coated non‐fullerene OSC processed with THF/IPA is demonstrated for the first time to obtain a promising PCE of 11.7%; even for the THF/IPA‐processed large‐area device (1.0 cm2) made by blade‐coating, a PCE of 10.6% can still be maintained. These results are critical for the large‐scale production of highly efficient OSCs in future studies.  相似文献   

3.
The rational design and synthesis of anisotropic 3D nanostructures with specific composition, morphology, surface structure, and crystal phase is of significant importance for their diverse applications. Here, the synthesis of well‐crystalline lotus‐thalamus‐shaped Pt‐Ni anisotropic superstructures (ASs) via a facile one‐pot solvothermal method is reported. The Pt‐Ni ASs with Pt‐rich surface are composed of one Ni‐rich “core” with face‐centered cubic (fcc) phase, Ni‐rich “arms” with hexagonal close‐packed phase protruding from the core, and facet‐selectively grown Pt‐rich “lotus seeds” with fcc phase on the end surfaces of the “arms.” Impressively, these unique Pt‐Ni ASs exhibit superior electrocatalytic activity and stability toward the hydrogen evolution reaction under alkaline conditions compared to commercial Pt/C and previously reported electrocatalysts. The obtained overpotential is as low as 27.7 mV at current density of 10 mA cm?2, and the turnover frequency reaches 18.63 H2 s?1 at the overpotential of 50 mV. This work provides a new strategy for the synthesis of highly anisotropic superstructures with a spatial heterogeneity to boost their promising application in catalytic reactions.  相似文献   

4.
5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号