首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Amphiphilicity is one of the molecular bases for self‐assembly. By tuning the amphiphilicity of building blocks, controllable self‐assembly can be realized. This article reviews different routes for tuning amphiphilicity and discusses different possibilities for self‐assembly and disassembly in a controlled manner. In general, this includes irreversible and reversible routes. The irreversible routes concern irreversible reactions taking place on the building blocks and changing their molecular amphiphilicity. The building blocks are then able to self‐assemble to form different supramolecular structures, but cannot remain stable upon loss of amphiphilicity. Compared to the irreversible routes, the reversible routes are more attractive due to the good control over the assembly and disassembly of the supramolecular structure formed via tuning of the amphiphilicity. These routes involve reversible chemical reactions and supramolecular approaches, and different external stimuli can be used to trigger reversible changes of amphiphilicity, including light, redox, pH, and enzymes. It is anticipated that this line of research can lead to the fabrication of new functional supramolecular assemblies and materials.  相似文献   

3.
Systems that are intelligent have the ability to sense their surroundings, analyze, and respond accordingly. In nature, many biological systems are considered intelligent (e.g., humans, animals, and cells). For man‐made systems, artificial intelligence is achieved by massively sophisticated electronic machines (e.g., computers and robots operated by advanced algorithms). On the other hand, freestanding materials (i.e., not tethered to a power supply) are usually passive and static. Hence, herein, the question is asked: can materials be fabricated so that they are intelligent? One promising approach is to use stimuli‐responsive materials; these “smart” materials use the energy supplied by a stimulus available from the surrounding for performing a corresponding action. After decades of research, many interesting stimuli‐responsive materials that can sense and perform smart functions have been developed. Classes of functions discussed include practical functions (e.g., targeting and motion), regulatory functions (e.g., self‐regulation and amplification), and analytical processing functions (e.g., memory and computing). The pathway toward creating truly intelligent materials can involve incorporating a combination of these different types of functions into a single integrated system by using stimuli‐responsive materials as the basic building blocks.  相似文献   

4.
5.
6.
董堃  郭涛  汪长征  许萍  张雅君 《材料导报》2017,31(Z1):205-209
微生物燃料电池(Microbial fuel cell,MFC)是一种新兴的生物电化学技术,电极材料是影响其产电性能的重要因素。阳极主要为微生物的粘附和电子转移提供场所,利用产电菌降解废水中的有机污染物,实现同步处理废水和回收能源。主要介绍了MFC阳极材料的研究进展,分析了其导电性、产电效率等性能的研究现状,并对其进行了总结和展望。  相似文献   

7.
“Paper” has greatly contributed to the development and spread of civilization. Even in today's “digitalized” world, paper continues to play a key role in socioeconomic growth, as is evidenced by the growth in global paper consumption. Unfortunately, the use of paper has its cost in terms of the exhaustion of world's natural resources. Consequently, new, cost‐effective technologies that preserve natural resources are required for this purpose. Functional materials have revolutionized the way people think about developing new technologies. Especially important in this regard are “smart reactive materials,” which are capable of actively responding to external stimuli such as heat, light, mechanical stress, and specific molecular orientations. Moreover, functionalized chromogenic materials, which undergo reversible color switching upon external stimulation, have attracted great attention in the context of developing rewritable paper. Here, investigations of various materials and systems that are devised for use as rewritable paper are reviewed with the hope that the coverage will stimulate and guide future studies in this area.  相似文献   

8.
Soft matter systems and materials are moving toward adaptive and interactive behavior, which holds outstanding promise to make the next generation of intelligent soft materials systems inspired from the dynamics and behavior of living systems. But what is an adaptive material? What is an interactive material? How should classical responsiveness or smart materials be delineated? At present, the literature lacks a comprehensive discussion on these topics, which is however of profound importance in order to identify landmark advances, keep a correct and noninflating terminology, and most importantly educate young scientists going into this direction. By comparing different levels of complex behavior in biological systems, this Viewpoint strives to give some definition of the various different materials systems characteristics. In particular, the importance of thinking in the direction of training and learning materials, and metabolic or behavioral materials is highlighted, as well as communication and information-processing systems. This Viewpoint aims to also serve as a switchboard to further connect the important fields of systems chemistry, synthetic biology, supramolecular chemistry and nano- and microfabrication/3D printing with advanced soft materials research. A convergence of these disciplines will be at the heart of empowering future adaptive and interactive materials systems with increasingly complex and emergent life-like behavior.  相似文献   

9.
10.
11.
12.
13.
14.
15.
The emergence of multidrug resistant bacterium threatens to unravel global healthcare systems, built up over centuries of medical research and development. Current antibiotics have little resistance against this onslaught as bacterium strains can quickly evolve effective defense mechanisms. Fortunately, alternative therapies exist and, at the forefront of research lays the photodynamic inhibition approach mediated by porphyrin based photosensitizers. This review will focus on the development of various porphyrins compounds and their incorporation as small molecules, into polymers, fibers and thin films as practical therapeutic agents, utilizing photodynamic therapy to inhibit a wide spectrum of bacterium. The use of photodynamic therapy of these porphyrin molecules are discussed and evaluated according to their electronic and bulk material effect on different bacterium strains. This review also provides an insight into the general direction and challenges facing porphyrins and derivatives as full‐fledged therapeutic agents and what needs to be further done in order to be bestowed their rightful and equal status in modern medicine, similar to the very first antibiotic; penicillin itself. It is hoped that, with this perspective, new paradigms and strategies in the application of porphyrins and derivatives will progressively flourish and lead to advances against disease.  相似文献   

16.
17.
在分析加权平均法、模糊综合评价法、TOPSIS法和灰色关联度评价法各自优缺点的基础之上,针对单一评价方法的不足,运用序号总和理论与众数理论,结合上述4种多指标评价方法,建立工程选材组合评价模式.以低温存储罐材料的选择为例,从功能性和经济性角度出发,选择了8种评价指标,由层次分析法得到10种候选材料的评价指标的权重,运用上述组合评价模式进行组合评价.结果表明,全硬态301型不锈钢是最佳的低温存储罐材料,与客现实际相符,且组合评价模式所得排序结果优于单一评价方法.在工程设计中使用组合评价模式进行选材评价,有助于弥补单一评价法的缺陷,是工程选材决策的有力工具.  相似文献   

18.
Recent achievements and future opportunities for the design of 2D, 3D, and 4D materials using photochemical reactions are summarized. Light is an attractive stimulus for material design due to its outstanding spatiotemporal control, and its ability to mediate rapid polymerization under moderate reaction temperatures. These features have been significantly enhanced by major advances in light generation/manipulation with light-emitting diodes and optical fiber technologies which now allows for a broad range of cost-effective fabrication protocols. This combination is driving the preparation of sophisticated 2D, 3D, and 4D materials at the nano-, micro-, and macrosize scales. Looking ahead, future challenges and opportunities that will significantly impact the field and help shape the future of light as a versatile and tunable design tool are highlighted.  相似文献   

19.
Supramolecular materials held together by noncovalent interactions, such as hydrogen bonding, host–guest interactions, and electrostatic interactions, have great potential in material science. The unique reversibility and adaptivity of noncovalent intreractions have brought about fascinating new functions that are not available by their covalent counterparts and have greatly enriched the realm of functional materials. This review article aims to highlight the very recent and important progresses in the area of functional supramoleuclar materials, focusing on adaptive mechanical materials, smart sensors with enhanced selectivity, soft luminescent and electronic nanomaterials, and biomimetic and biomedical materials with tailored structures and functions. We cannot write a complete account of all the interesting work in this area in one article, but we hope that it can in a way reflect the current situation and future trends in this prosperously developing area of functional supramolecular materials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号