首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Abstract:  A set of triaxial compression tests on specimens of argillaceous rock were performed under tomographic monitoring at the European Synchrotron Radiation Facility in Grenoble, France, using an original experimental set-up developed at Laboratoire 3S , Grenoble. Complete 3D images of the specimens were recorded throughout each test using X-ray microtomography. Such images were subsequently analysed using a Volumetric Digital Image Correlation software developed at the Laboratoire de Mécanique des Solides in Palaiseau, France. Full-field incremental strain measurements were obtained, which allow to detect the onset of shear strain localisation and to characterise its development in a 3D complex pattern. Volumetric Digital Image Correlation revealed patterns which could not be directly observed from the original tomographic images, because the deformation process in the zones of localised deformation was essentially isochoric (i.e. without volumetric strain), hence not associated to density changes.  相似文献   

2.
Optimizing the performance of lignocellulosic fibers often requires relating mechanical behavior or morphological characteristics to microstructure. X-ray computed microtomography (X-ray CT), which provides 3D images with a high level of detail at both the micro- and macro-scales, may overcome these difficulties. This work provides a comparative analysis of the potential of X-ray CT (3D) and an office scanner (2D) for morphological characterization of lignocellulosic fibers. To this end, three specimens of lignocellulosic fiber materials obtained after the first decortication of the plant were retained. X-ray CT and 2D scanning correlations of sample diameter distributions are presented. The general aspects of the fibers diameter correlation are discussed. Image analysis was used to assess the potential and limitations of both the X-ray CT and 2D scanning methods based on the experimental work, and the main conclusions of the benchmark study are given in a table.  相似文献   

3.
In this work, we analyze the influence of different fiber surface treatments on the mechanical properties of plain weave composites. The reinforcement is a glass fibers fabric and the matrix is an acrylic polymer. Until very recently, this thermoplastic polymer family was not used in composite industry. It is therefore necessary to study if the existing fiber surface treatments are suitable for acrylic resins or if new ones have to be found. At the macroscale, composite materials corresponding to different fiber surface treatments were characterized with: (i) monotonic in-plane shear tests and (ii) heat-build up fatigue measurements on specimens with ±45° fiber orientations with respect to the tensile force. At the mesoscale (fabric scale), the development of damage was experimentally analyzed from (i) 3-D DIC (Digital Image Correlation) full-field strain measurements with spatial resolution smaller than the textile repeating unit and (ii) X-ray microtomography. We show that the analyzed composite materials exhibit linear viscoelastic behavior until a given stress threshold above which damage develops in the material. It was also found that the application on the fibers of a coupling agent specifically developed for promoting the bond between glass fibers and acrylic resins improves the composite mechanical properties, in particular the fatigue properties.  相似文献   

4.
Evolution of the inner microstructure of uniaxially pressed copper powders was investigated by in situ X-ray microtomography. Experiments were carried out at the European Synchrotron in Grenoble, France. Sintering was performed under reducing atmosphere at 1050 °C. Qualitative and quantitative information from the 3D images acquired along the whole sintering cycle were analyzed. From that, macro- and microstructural features of the evolving microstructure were obtained. We found that large pores can be created during sintering and then they can grow during the whole thermal cycle by reducing the initial relative density of the sample by 10 %. The effect of the pore shape and the heterogeneous distribution of the pore volume fraction inside the sample are responsible for the behavior observed during sintering. The heterogeneous deformation measured is controlled by the evolution of the porosity.  相似文献   

5.
Drying shrinkage (DS) of concrete is important. The graded and heterogeneous DS inside the concrete may lead to cracking and further deteriorate the mechanical and durability properties. To elaborate the drying gradient and deformation heterogeneity, the full field DS distributions of foam concrete have been studied using an expanded Digital Volume Correlation method, which has a high precision of 0.01 voxel (about 0.6 μm) in displacement. The effectiveness of DS in local sub-volume is verified from bulk shrinkage of the whole specimen. The DS gradient due to drying is clearly revealed, and DS heterogeneity in spatial domain and in frequency domain is identified. A full view of foam concrete's drying processes is built. At the middle drying stage, three different states exist simultaneously, especially a drying front arises with high drying shrinkage.  相似文献   

6.
The effect of temperature cycle on the void volume fraction, shape and spatial distribution was determined by means of X-ray microtomography in [0]10 AS4/8552 composite laminates manufactured by compression molding. Cure temperatures were designed to obtain different processing windows while the overall degree of cure was equivalent, leading to laminates with average porosities in the range 0.4% and 2.9%. Regardless of the final porosity, voids were elongated, oriented parallel to the fibers and concentrated in channels along the width of the laminate as a result of the inhomogeneous process of consolidation and resin flow along the fibers. The interlaminar shear strength was found to be controlled by the void volume fraction in panels with porosity above 1%.  相似文献   

7.
The aim of this paper is to characterise in 3D the capillary collapse phenomenon using X-ray Computed Tomography (X-ray CT) during water infiltration into a partially saturated soil. To understand the mechanisms leading to capillary collapse, we progressivelly saturated a specimen of sand by controlling the water pressure using the negative water column technique. During this imbibition process, we followed the granular structure using X-ray CT. The microstructure was analysed to assess the volume of water filling the pores and deformation of the granular skeleton using Volumetric Digital Image Correlation tools. Matheron’s granulometry was used in parallel to characterize the initial microstructure and its evolution during the imbibition. We show that the collapse phenomenon can occur in a clean sand and can be controlled continuously with the negative water column technique. The volume change of the specimen at local scale started at a particular water content which coincided with the coalescence of capillary bridges between grain clusters. Gravity effects leading to a non-negligible gradient of the hydrostatic pressure along the specimen’s height were observed and induced a vertical gradient of strain. Localisation of the vertical strain on conical surfaces and of the volumetric strain and water content at the bottom corner of the specimen appeared during the imbibition process. These localisations are thought to be due to an inhomogeneity of the initial density or/and an effect of cell walls facilitating the sliding of grains and the provision of water along preferential paths. However, in spite of those localisations, macroscopic measurements at the scale of the sample were representative of the local behaviour of the unsaturated sand.  相似文献   

8.
Digital image correlation (DIC) is applied to analyzing the deformation mechanisms under transverse compression in a fiber-reinforced composite. To this end, compression tests in a direction perpendicular to the fibers were carried out inside a scanning electron microscope and secondary electron images obtained at different magnifications during the test. Optimum DIC parameters to resolve the displacement and strain field were computed from numerical simulations of a model composite and they were applied to micrographs obtained at different magnifications (250×, 2000×, and 6000×). It is shown that DIC of low-magnification micrographs was able to capture the long range fluctuations in strain due to the presence of matrix-rich and fiber-rich zones, responsible for the onset of damage. At higher magnification, the strain fields obtained with DIC qualitatively reproduce the non-homogeneous deformation pattern due to the presence of stiff fibers dispersed in a compliant matrix and provide accurate results of the average composite strain. However, comparison with finite element simulations revealed that DIC was not able to accurately capture the average strain in each phase.  相似文献   

9.
Composite processing strongly affects the size of lignocellulosic fibers, and consequently the mechanical properties of the final product. Using a reliable method for the analysis of fiber length and diameter distributions is thus crucial for the understanding of fiber behavior during processing. In this study, three different techniques, X-ray microtomography, 2D scanning and automated fiber analyzer, were compared in terms of their reliability for the characterization of dimensions of two kinds of lignocellulosic fibers, hemp and miscanthus, in polymer-natural fiber composites. Statistical analysis was employed to interpret fiber size distributions. The study confirmed that interpreting the dimensions of natural fiber is still a difficult task. The inherent limitations of the measuring methods make each technique complementary to the others in terms of length scale. The choice of the technique is, therefore, strictly dependent on fiber dimensions and the aim of the work.  相似文献   

10.
The performance of advanced functional materials for fuel cell applications are closely linked to the material composition and morphology at the micro and nano-scales. 3D characterization techniques that can provide bulk information at these fine scales are therefore essential for microstructure optimization of these materials. Here, the X-ray nano-holotomography technique is used to image various multi-phase and absorbing solid oxide fuel cell electrodes. Different porous structures for typical commercial cells and innovative electrode designs obtained using a freeze-casting process are studied. Taking advantage of the geometrical setup and the use of high energy X-rays, both large reconstructions (field of view: 150 µm) and local tomography at higher resolution (field of view: 50 µm) can be performed on the same sample to have a multi-scale approach. This produces highly representative sample volumes with a size/resolution ratio that allows the geometric and physical properties of the materials to be calculated, e.g., connectivity of each phase, mean particles diameters, specific surface area, particle size distributions, tortuosity factors, and densities of triple boundary lengths.  相似文献   

11.
This study used very high strain rate uniaxial compression testing to analyze the microstructure and texture evolution during high speed rolling of as-cast AZ31B alloy. A split Hopkinson pressure bar equipped with induction radiation furnace was used to attain a strain rate of 1200 s?1 in the temperature range of 25–350 °C and the result was compared with low strain rate (0.01 s?1) behavior. As well, high speed rolling at 500 m min?1 was employed to successfully roll AZ31 alloy in one pass with 71 % reduction at 200 °C. During rolling, the mill was suddenly stopped and the sheet was withdrawn from rolling gap and the microstructure and texture evolution was observed. Grain boundary misorientation analysis shows that coincident site lattice boundaries related to contraction twins and secondary twins are more numerous in the samples deformed at high strain rate. With increasing strain for both rolling and compression at 200 °C, the splitting of basal poles was observed, indicating the activation of more contraction twins and secondary twins compared to low strain rate deformation. Also, the recrystallized volume fraction increased significantly with strain rate, probably due to increasing the twin-induced recrystallization fraction. On annealing of the samples compressed at 200 °C, secondary twins and their vicinity were observed to be the preferential sites for nucleation and it seems that rapid recrystallization on secondary twins contributes to the basal texture weakening. Therefore, an increasing number of such twins increase the texture weakening.  相似文献   

12.
The aim of this study is to show the validity of a 3D numerical approach and the 2D theoretical approaches from 3D experimental results on a single edge notch cracked specimen loaded in mode I. The three displacement components all over the volume were measured by means of Digital Volume Correlation coupled with X-ray computed tomography. The numerical approach and the experimental one give similar results with differences equivalent to the accuracy of the method of measurements. The theoretical approach provides higher results and is not relevant to experimental results, but this approach allows an evaluation of the 3D effect zone.  相似文献   

13.

In situ synchrotron X-ray microtomography was used to characterize the bulk deformation behavior by computing the Poisson’s ratio of expanded thermoplastic polyurethane (eTPU) molded bead foams used in footwear midsole during compression. Quantitative data on morphological characteristics were obtained using an iterative image processing workflow. Image correlation on the 4D datasets using DVC was performed to calculate the volumetric and axial strain to estimate the Poisson ratio. Strain maps from DVC showed the influence of variability in ligament thickness distribution on the global mechanical behavior exhibited which dominated the response seen in these bead foams. Finally, our results showed a strong correlation between Poisson ratio and distribution of ligament thickness in foams.

  相似文献   

14.
Abstract:  Digital image correlation techniques (DIC) are applied to sequences of optical images of argillaceous rock samples submitted to uniaxial compression at various saturation states at both the global centimetric scale of the samples and the local scale of their composite microstructure, made of a water-sensitive clay matrix and other mineral inclusions with a typical size of 50 μm. Various scales of heterogeneities are revealed by the optical technique. Not only is it confirmed that the clay matrix deforms much more than the other mineral inclusions, but it also appears that the deformation is very inhomogeneous in the matrix, with some areas almost not deformed, while others exhibit deformation twice the average overall strain (for a gauge length of 45 μm), depending on the local distribution of the inclusions. In almost-saturated rocks, overall heterogeneities are also linked to the presence of a network of cracks, induced by the preliminary hydric load. On such wet samples, DIC analysis shows that the overall strain results both from the bulk deformation of the sound rock, with deformation levels similar to those in dry samples, and the closing or opening of these mesoscopic cracks.  相似文献   

15.
Porous mullite ceramics with unidirectionally oriented pores were prepared by an extrusion method using rayon fibers as the pore formers. Rayon fibers of 8.1, 9.6, 16.8, and 37.6 μm in diameter were used as the pore formers and were kneaded with alumina powder, kaolin clay, China earthen clay, and water to form pastes. These pastes were extruded into cylindrical tubes, dried, and fired at 1500 °C for 4 h. The apparent porosities ranged from 45.7 to 48.2 %. The pore size distributions showed a sharp peak at 9.4, 10.0, 15.6, and 30 μm with increasing fiber diameters. The height of the capillary rise was 1780, 1670, 1320, and 950 mm with increasing fiber diameter. The maximum capillary rise is much higher than previously reported. The contact angle and effective pore radius that determine the capillary rise ability were calculated by fitting the capillary rise curves using the Fries and Dreyer’s equation.  相似文献   

16.
This article describes a new process to manufacture open-cell steel foams. Calcium chloride anhydrous is used as a space holder. By changing the values of the main manufacturing parameters such as volume percentage, and the size and shape of the space holder, we produce different steel foam samples which cover a wide range of solid fraction, pore size, and shape. The effects of space-holder content and sintering condition such as temperature and time on the porosity of steel foam samples are discussed. The microstructure and composition of steel foam samples are observed and analyzed by scanning electron microscope and X-ray diffraction. The compressive curves of steel foams are measured by a universal testing machine. The experiment results show the compressive strength of steel foam samples with porosities between 65% and 85% is in the range of 66.4 ~ 12.9 MPa. The compressive strength depends mainly on the porosity and pore shape. The absorbed energy per unit volume (W) of steel foams with porosities between 85% and 65% is in range of 6.8 ~ 31.2 MJ/m3. Under the condition of identical porosity, the absorbed energy per unit volume (W) of steel foam is about three times of aluminum foam. In compression, steel foam specimens show heterogeneous macroscopic deformation.  相似文献   

17.
Deformation and fracture behavior of Dual Phase (DP) high strength steel were investigated by means of a microstructure based Finite Element (FE) modeling. Representative Volume Elements (RVEs) were applied to consider effects of various microstructure constituents and characteristics. Individual stress–strain curves were provided for ferrite, martensite as well as transformation induced Geometrically Necessary Dislocations (GNDs) taking into account in the RVEs. Principally, the GNDs occurred around phase boundaries during quenching process due to the austenite–martensite transformation. Flow behaviors of individual phases were defined on the basis of dislocation theory and partitioning of local chemical composition. Then, flow curves of the examined DP steel were predicted. Furthermore, the Gurson–Tvergaard–Needleman (GTN) model was used to represent ductile damage evolution in the microstructure. Occurrences of void initiation were characterized and damage parameters for RVE simulations were hence identified. Finally, influences of the GNDs, local stress and strain distributions and interactions between phases on predicted crack initiation in the DP microstructure were discussed and correlated with experimental results.  相似文献   

18.
Thermally sprayed ceramic coatings such as plasma-sprayed alumina exhibit a composite microstructure actually due to the presence of defects such as pores, inter-lamellar and intra-lamellar cracks. These second phase-typed features influence the mechanical behaviour of the coating dramatically. In this study, a microstructure simulation of plasma-sprayed alumina was developed for the optimizing of component properties such as electrical tool used in the oil industry. This approach consisted of a finite-element analysis of mechanical properties from simulated microstructures. Several composite microstructures were tested from air plasma spraying of alumina. Various degrees of porosity and cracks could be obtained from different spraying conditions. Every composite microstructure was studied using a quantitative image analysis of scanning electron microscope (SEM) cross-sections. A finite-element model based on the actual microstructure was developed. First, two-dimensional (2D) finite elements meshes were created from SEM images of microstructures. Then, in order to have a realistic representation of the three-dimensional (3D) microstructure, pictures were obtained using X-ray microtomography. Volume tetrahedral grids were generated to simulate the properties of alumina coatings. This work studies the contribution of every part of the alumina coating to the final properties and shows potentials and limitations of the 2D and 3D computational approach.  相似文献   

19.
Hot deformation behavior of as-cast TX32 (Mg–3Sn–2Ca) alloy has been studied in uniaxial compression in the temperature and strain rate ranges of 300–500 °C and 0.0003–10 s?1 with a view to characterize the evolution of microstructure and texture. On the basis of the temperature and strain rate dependence of flow stress, a processing map has been developed and the crystallographic orientation information on the deformed specimens has been obtained from electron back scatter diffraction micro-texture analysis. The processing map revealed two domains of dynamic recrystallization in the temperature and strain rate ranges of (1) 300–350 °C and 0.0003–0.001 s?1 and (2) 390–500 °C and 0.005–0.6 s?1. Specimens deformed at peak in Domain 1 exhibited maximum intensity of basal poles located at about 35–45° to the compression axis while those deformed at peak in Domain 2 showed near-random texture. Schmid factor analysis of different slip systems operating in the two domains suggests that basal + prismatic slip causes the basal texture in Domain 1 while second-order pyramidal slip randomizes the texture in Domain 2.  相似文献   

20.
根据活性粉末混凝土(RPC)材料特性及构件受压稳定理论,以截面最薄处抗剪强度为控制指标设计了中空受压构件截面。据此制作了4个中空截面受压构件,对其轴压承载力进行了理论计算并进行了轴压破坏试验。采用数字影像相关技术(DIC)获得了构件全场应变云图进而得到构件荷载-变形关系曲线。基于Weibull构建了RPC的本构模型,并在ABAQUS中构建与之对应的混凝土损伤塑性本构模型。采用RPC损伤塑性本构模型对所设计中空截面构件进行了数值模拟,分析结果与理论计算及试验结果符合较好,构件破坏时RPC强度能够得到充分发挥,由此验证了构件截面设计的合理性。研究工作为RPC在框架结构中应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号