首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the excitonic recombination dynamics in an ensemble of (9,4) semiconducting single-wall carbon nanotubes by high-sensitivity time-resolved photoluminescence experiments. Measurements from cryogenic to room temperature allow us to identify two main contributions to the recombination dynamics. The initial fast decay is temperature independent and is attributed to the presence of small residual bundles that create external nonradiative relaxation channels. The slow component shows a strong temperature dependence and is dominated by nonradiative processes down to 40 K. We propose a quantitative phenomenological modeling of the variations of the integrated photoluminescence intensity over the whole temperature range. We show that the luminescence properties of carbon nanotubes at room temperature are not affected by the dark/bright excitonic state coupling.  相似文献   

2.
Resonance Raman spectra of individual strained ultralong single-wall carbon nanotubes (SWNTs) are studied. Torsional and uniaxial strains are introduced by atomic force microscopy manipulation. Torsional strain strongly affects the Raman spectra, inducing a large downshift in the E2 symmetry mode in the G+ band, but a slight upshift for the rest of the G modes and also an upshift in the radial breathing mode (RBM). Whereas uniaxial strain has no effect on the frequency of either the E2 symmetry mode in the G+ band or the RBM, it downshifts the rest of the G modes. The Raman intensity change reflects the effect of these strains on the SWNT electronic band structure.  相似文献   

3.
Ultralong single-wall carbon nanotubes   总被引:4,自引:0,他引:4  
Since the discovery of carbon nanotubes in 1991 by Iijima, there has been great interest in creating long, continuous nanotubes for applications where their properties coupled with extended lengths will enable new technology developments. For example, ultralong nanotubes can be spun into fibres that are more than an order of magnitude stronger than any current structural material, allowing revolutionary advances in lightweight, high-strength applications. Long metallic nanotubes will enable new types of micro-electromechanical systems such as micro-electric motors, and can also act as a nanoconducting cable for wiring micro-electronic devices. Here we report the synthesis of 4-cm-long individual single-wall carbon nanotubes (SWNTs) at a high growth rate of 11 microm s(-1) by catalytic chemical vapour deposition. Our results suggest the possibility of growing SWNTs continuously without any apparent length limitation.  相似文献   

4.
The current carrying capacity of single-walled semiconducting carbon nanotubes (CNTs) is studied by self-consistent quantum simulations using the non-equilibrium Green’s function formalism with the self-consistent Born approximation. The simulation shows that the current carrying capacity depends on the bias regime and is drastically different from that of metallic tubes. For long CNTs (with a length much longer than zone boundary and optical phonon scattering mean free path), the current saturates around 20 μA in the forward bias regime with unipolar transport due to phonon scattering. In ambipolar transport regime, the current delivery limit is still about 20 μA due to recombination of electron and hole currents. In contrast, for short semiconducting CNTs, the current delivery capacity can be above 25 μA in the unipolar transport regime and further double in the ambipolar transport regime. In reverse bias regime, the current of a long CNT can exceed 20 μA due to the second subband conduction and increased electron injection from the drain. The simulation provides a coherent explanation to the dependence of current delivery limit on bias regime and channel length, which is consistent with recent experiments.  相似文献   

5.
The AC dielectrophoresis-induced separation of metallic and semiconducting single-wall carbon nanotubes has been carried out in a continuous flow microfluidic system with isolated electrodes. The separation has been studied for single-wall carbon nanotube aqueous suspensions with ionic (sodium dodecylsulphate) and non-ionic (TritonX-100) surfactants. The efficiency of separation has been determined with the help of resonant Raman spectroscopy using various excitation energies. The prototype microfluidic cell presently shows somewhat inferior separation efficiency with respect to static dielectrophoretic filtering on arrays of microelectrodes but has potential for improvements. Factors influencing the separation efficiency and scaling up of the process are discussed.  相似文献   

6.
We have studied the scaling of controlled nonlinear buckling processes in materials with dimensions in the molecular range (i.e., approximately 1 nm) through experimental and theoretical studies of buckling in individual single-wall carbon nanotubes on substrates of poly(dimethylsiloxane). The results show not only the ability to create and manipulate patterns of buckling at these molecular scales, but also, that analytical continuum mechanics theory can explain, quantitatively, all measurable aspects of this system. Inverse calculation applied to measurements of diameter-dependent buckling wavelengths yields accurate values of the Young's moduli of individual SWNTs. As an example of the value of this system beyond its use in this type of molecular scale metrology, we implement parallel arrays of buckled SWNTs as a class of mechanically stretchable conductor.  相似文献   

7.
Biodistribution of carbon single-wall carbon nanotubes in mice   总被引:7,自引:0,他引:7  
Carbon nanotubes are promising for use in biomedical and pharmaceutical sciences. Therefore, it becomes imperative to know the basic biological properties of carbon nanotubes in vivo. We labeled the water-soluble hydroxylated carbon single-wall nanotubes with radioactive 125I atoms, and then the tracer was used to study the distribution of hydroxylated carbon single-wall nanotubes in mice. They moved easily among the compartments and tissues of the body, behaving as small active molecules though their apparent mean molecular weight is tremendously large. This study, for the first time, affords a quantitative analysis of carbon nanotubes accumulated in animal tissues.  相似文献   

8.
9.
A classical protocol widely used in organic chemistry of aromatic and polyaromatic molecules has been successfully applied in this work for the decarboxylation of oxidized single-wall carbon nanotube (SWNT) to rend C-H SWNT derivatives. SWNT produced by arc discharge method have been oxidized during a purification process using strongly oxidant agents, such as hydrogen peroxide and nitric acid. The decarboxylation of oxidized SWNT has been conduced with copper(I) oxide in a 50:50 solution of N-methylpyrrolidone and quinoline. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and acid-base potentiometric titration analyses were carried out to characterize quali and quantitatively the changes in the chemical environment on the SWNT surface in each step of the purification and the decarboxylation process. Those techniques showed the appearance of mainly carboxylic and phenolic groups after the purification process and the disappearance of the carboxylic groups after the decarboxylation reaction. Fourier transform infrared spectroscopy analysis indicated also the formation of aliphatic and aromatic C-H groups. X-ray photoelectron spectroscopy and potentiometric titration results determined an efficiency higher than 90% for our decarboxylation procedure. The purity and structural quality of the SWNT sample used in the decarboxylation process were evaluated by thermogravimetry and Raman spectroscopy. Thermogravimetric analysis identified a purified sample with approximately 80 wt% of SWNT, in fractions distributed in highly structured SWNTs (25 wt%), with distribution in composition, length and structural quality (35 wt%) and with very defective and short tubes (25 wt%). The damages on the purified SWNT walls were characterized by the Raman scattering analysis.  相似文献   

10.
单壁碳纳米管制备研究新进展   总被引:1,自引:0,他引:1  
项顼  曹传宝 《材料导报》2003,17(4):43-45
碳纳米管由于具有独特的结构和奇异的物理、化学性质而倍受人们的青睐,并逐渐展示出巨大的应用前景。简要介绍了碳纳米管的结构、性质和应用,并详细评述了单壁碳纳米管制备的新进展。  相似文献   

11.
Water-filled single-wall carbon nanotubes as molecular nanovalves   总被引:1,自引:0,他引:1  
It is known that at low temperature, water inside single-wall carbon nanotubes (water-SWNTs) undergoes a structural transition to form tube-like solid structures. The resulting ice NTs are hollow cylinders with diameters comparable to those of typical gas molecules. Hence, the gas-adsorption properties of ice- and water-SWNTs are of interest. Here, we carry out the first systematic investigation into the stability of water-SWNTs in various gas atmospheres below 0.1 MPa by means of electrical resistance, X-ray diffraction, NMR measurements and molecular dynamics calculations. It is found that the resistivity of water-SWNTs exhibits a significant increase in gas atmospheres below a critical temperature Tc, at which a particular type of atmospheric gas molecule enters the SWNTs in an on-off fashion. On the basis of this phenomenon, it is proposed that water-SWNTs can be used to fabricate a new type of molecular nanovalve.  相似文献   

12.
Exploiting the effect of surface-enhanced Raman scattering (SERS), the Raman signal of single-wall carbon nanotubes (SWNTs) can be enhanced by up to 14 orders of magnitude when the tubes are in contact with silver or gold nanostructures and Raman scattering takes place predominantly in the enhanced local optical fields of the nanostructures. Such a level of enhancement offers exciting opportunities for ultrasensitive Raman studies on SWNTs and allows resonant and non-resonant Raman experiments to be done on single SWNTs at relatively high signal levels. Since the optical fields are highly localized within so-called "hot spots" on fractal silver colloidal clusters, lateral confinement of the Raman scattering can be as small as 5 nm, allowing spectroscopic selection of a single nanotube from a larger population. Moreover, since SWNTs are very stable "artificial molecules" with a high aspect ratio and a strong electron-phonon coupling, they are unique "test molecules" for investigating the SERS effect itself and for probing the "electromagnetic field contribution" and "charge transfer contribution" to the effect. SERS is also a powerful tool for monitoring the "chemical" interaction between the nanotube and the metal nanostructure.  相似文献   

13.
Experimental results are provided for reversible generation of holes on single-wall carbon nanotubes and their closing by temperature treatment. The generation of the holes was analyzed by checking the amount of C60 fullerenes that can be filled into the tubes and subsequently transformed to an inner-shell tube. The concentration of the latter was determined from the Raman response of the radial breathing mode. The tube opening process was performed by exposure of the tubes to air at elevated temperatures. This process was found to be independent from the tube diameters. In contrast, the tube closing process was found to depend strongly of the tube diameter. For large diameter tubes (d = 1.8 nm) the activation energy was 1.7 eV whereas for the small diameter tubes this energy was only 0.33 eV. Optimum conditions for tube closing were found to be one hour at 800 degrees C or 10 minutes at 1000 degrees C. From the almost identical Raman spectra for the tubes before and after engineering, a predominant generation of the holes at the tube ends is concluded.  相似文献   

14.
Understanding catalysed growth of single-wall carbon nanotubes   总被引:1,自引:0,他引:1  
Classical molecular dynamics simulations using a reactive force field, which allows simulation of bond-breaking and bond-forming, are carried out to investigate the several stages of a catalysed synthesis process of single-wall carbon nanotubes. The simulations assume instantaneous catalysis of a precursor gas on the surface of metallic nanoclusters, illustrating how carbon atoms dissolve in the metal cluster and then precipitate on its surface, evolving into various carbon structures, finally forming a cap which eventually grows to a single-wall nanotube. The results are discussed in the context of experimental synthesis results.  相似文献   

15.
Electron transport in semiconducting zigzag carbon nanotubes is studied by solving the Boltzmann transport equation using the single-particle Monte Carlo technique. The electronic band structure is based on a standard nearest-neighbour tight-binding parameterization, and the phonon spectrum is calculated using a fourth nearest-neighbour force constant model. The electron-phonon scattering probabilities are calculated within a tight-binding formalism. The steady-state drift velocities for the semiconducting zigzag nanotubes (8, 0), (10, 0), (11, 0), (13, 0), and (25, 0) are computed as functions of electric field strength and temperature, and the results are analysed here. The results show the presence of negative differential resistance at high electric fields for some of the nanotubes. The drift velocity and the low-field mobility reach a maximum value of ? 4.67 × 10? cm s?1 and? 4 × 10? cm2 V?1 s?1, respectively, for a (25, 0) nanotube.  相似文献   

16.
Nanostructures resulting from the incorporation of silver iodide into single-wall carbon nanotubes (SWCNTs) of various diameters have been studied using molecular dynamics simulation. The results indicate the formation of single-wall silver iodide nanotubes when the SWCNT diameter is within 14.2 Å, whereas thicker carbon tubes contain, in addition, an axial “filament” of silver and iodide ions. AgI nanotubes in SWCNTs typically have a hexagonal structure (with the ions in trigonal coordination).  相似文献   

17.
The interaction of single wall carbon nanotubes (SWNT) with an aqueous solution of the fully sulfonated polyaniline poly(2-methoxyaniline-5-sulfonic acid) (PMAS) and (+)-1-phenylethylamine (PhEA) has been investigated using spectroscopic methods. UV-vis spectral measurements show that the PMAS backbone undergoes conformational changes upon interaction with both SWNT and PhEA. Partial intercalation of PMAS into SWNTbundles was confirmed by Raman spectroscopy and electron microscopy.  相似文献   

18.
A method is developed to determine the conditions for the onset of localized failure of carbon nanotubes. Examples of failure modes include ductile necking under tension or localized crushing under compression. A nanoscale continuum theory for carbon nanotube is adapted. The onset of localized failure is identified by the singularity point of the acoustic tensor derived from continuum energy function based on Tersoff–Brenner potential. The analysis predicts 35–44% of breaking strains for tension and 18–25% compressive strain for plastic collapse. The results are in agreement with molecular dynamics simulations and experimental estimations reported in the literature.  相似文献   

19.
Translocation of single-wall carbon nanotubes through solid-state nanopores   总被引:1,自引:0,他引:1  
We report the translocation of individual single-wall carbon nanotubes (SWNTs) through solid-state nanopores. Single-strand DNA oligomers are used to both disperse the SWNTs in aqueous solution and to provide them with a net charge, allowing them to be driven through the nanopores by an applied electric field. The resulting temporary interruptions in the measured nanopore conductance provide quantitative information on the diameter and length of the translocated nanotubes at a single-molecule level. Furthermore, we demonstrate that the technique can be utilized to monitor bundling of SWNT in solution by using complementary nucleotides to induce tube-tube agglomeration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号