首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycrystalline samples of Ba4Ln2Fe2Ta8O30 (Ln = La and Nd) were prepared by a high temperature solid-state reaction technique. The formation, structure, dielectric and ferroelectric properties of the compounds were studied. Both compounds are found to be paraelectrics with filled tetragonal tungsten bronze (TB) structure at room temperature. Dielectric measurements revealed that the present ceramics have exceptional temperature stability, a relatively small temperature coefficient of dielectric constant (τ ε ) of −25 and −58 ppm/°C, with a high dielectric constant of 118 and 96 together with a low dielectric loss of 1.2 × 10−3 and 2.8 × 10−3 (at 1 MHz) for Ba4La2Fe2Ta8O30 and Ba4Nd2Fe2Ta8O30, respectively. The measured dielectric properties indicate that both materials are possible candidates for the fabrication of discrete multilayer capacitors in microelectronic technology.  相似文献   

2.
Pure and Zr-substituted CaCu3(Ti1−x Zr x )4O12 (x = 0, 0.01, 0.02, 0.03) ceramics were prepared by the Pechini method. X-ray powder diffraction analysis indicated the formation of single-phase compound, and all the diffraction peaks were completely indexed by the body-centered cubic perovskite-related structure. The effects of Zr4+ ion substituting partially Ti4+ ion on the dielectric properties were investigated in frequency range between 100 Hz and 1 GHz. The low frequency (f ≤ 105 Hz) dielectric constant decreases with Zr substitution and the high frequency (f ≥ 107 Hz) dielectric constant is unchanged. Interestingly, a low-frequency relaxation was observed at room temperature through Zr substitution. The observed dielectric properties in Zr-substituted samples were discussed using the internal barrier layer capacitor model. A corresponding equivalent circuit was adopted to explain the dielectric dispersion. The characteristic frequency of low-frequency relaxation rises due to the decrease of the resistivity of grain boundary with Zr substitution, which is likely responsible for the large low-frequency response at room temperature.  相似文献   

3.
Bismuth-layered compound Ca0.15Sr1.85Bi4−xNdxTi5O18 (CSBNT, x = 0–0.25) ferroelectric ceramics samples were prepared by solid-state reaction method. The effects of Nd3+ doping on their ferroelectric and dielectric properties were investigated. The remnant polarization Pr of CSBNT ceramics increases at beginning then decreases with increasing of Nd3+ doping level, and a maximum Pr value of 9.6 μC/cm2 at x = 0.05 was detected with a coercive field Ec = 80.2 kV/cm. Nd3+ dopant not only decreases the Curie temperature linearly, but also the dielectric constant (εr) and dielectric loss tangent (tan δ). The magnitudes of εr and tan δ at the frequency of 100 kHz are estimated to be 164 and 0.0083 at room temperature, respectively.  相似文献   

4.
Ca1−3x/2Nd x Cu3Ti4O12 (x = 0, 0.1, 0.2) ceramics were prepared by a solid state reaction process, and single-phased structures were obtained for all the compositions. The dielectric characteristics of pure and Nd-substituted CaCu3Ti4O12 ceramics were investigated together with the microstructures. The mixed-valent structures of Cu+/Cu2+ and Ti3+/Ti4+ in the present ceramics were confirmed by X-ray photoelectron analysis. The dielectric relaxation in the low temperature range was examined in detail and the variation of dielectric constant and dielectric loss was attributed to the modification mixed-valent structures.  相似文献   

5.
In this work, the conduction and dielectric properties of Al0.2Cd0.8Fe2O4 ferrite nanoparticle, which was synthesized by a co-precipitation method, were investigated. Experimental data were taken from 20 Hz to 10 MHz and from 293 to 613 K. AC conductivity of the sample was analyzed within the framework of the overlapping large polaron tunneling (OLPT) mechanism. DC conductivity behavior fits the classical Arrhenius-type conductivity in the examined temperature range. Electrical properties of the material sample have been studied using an impedance spectroscopy technique. The effect of frequency and temperature on dielectric constant (ε ), dielectric loss (tan ??), and impedance (Z′ and Z′′) has been discussed in terms of hopping of charge carriers between Fe2+ and Fe3+ ions. According to results, a relaxation process fits the Cole–Cole model.  相似文献   

6.
A.c. measurements were preformed on bulk samples of Ca1−x Sr x TiO3 (CST) perovskites with x = 0, 0.1 and 0.5 as a function of temperature range 300–450 K and frequency range 103–105 Hz . The experimental results indicate that the a.c. conductivity σa.c.(ω), dielectric constant ε′ and dielectric loss ε′′ depend on the temperature and frequency. The a.c. conductivity as a function of frequency is well described by a power law Aω S with s the frequency exponent. The obtained values of s > 1 decrease with increasing temperature. The present results are compared to the principal theories that describe the universal dielectric response (UDR) behavior.  相似文献   

7.
Lead-free ferroelectric ceramics of (1−x) [0.88Na0.5Bi0.5TiO3-0.12K0.5Bi0.5TiO3]-x KNbO3(x = 0, 0.02, 0.04, and 0.06) were prepared by the conventional ceramic fabrication technique. The crystal structure, dielectric properties and P-E hysteresis loops were investigated. XRD data showed that all compositions could form pure perovskite structure. Temperature dependence of dielectric constant ε r and dissipation factor tanδ measurement between room temperature and 500C revealed that the compounds experience phase transitions that from ferroelectric to anti-ferroelectric and anti-ferroelectric to paraelectric in the range of x = 0–0.04. The frequency dependent dielectric constant showed these compounds were relaxor ferroelectric. At low frequency and high temperature, dielectric constant and dissipation factor increased sharply attributed to the superparaelectric clusters after the KNbO3 doped.  相似文献   

8.
xBaTiO3 + (1 − x)Ni0.93Co0.02Cu0.05Fe2O4 (x = 0.5, 0.6, 0.7, 0.8) composites with ferroelectric–ferromagnetic characteristics were synthesized by the ceramic sintering technique. The presence of constituent phases in the composites was confirmed by X-ray diffraction studies. The average grain size was calculated by using a scanning electron micrograph. The dielectric characteristics were studied in the 100 kHz to 15 MHz. The dielectric constant changed higher with ferroelectric content increasing; and it was constant in this frequency range. The relation of dielectric constant with temperature was researched at 1, 10, 100 kHz. The Curie temperature would be higher with frequency increasing. The hysteresis behavior was studied to understand the magnetic properties such as saturation magnetization (M s). The composites were a typical soft magnetic character with low coercive force. Both the ferroelectric and ferromagnetic phases preserve their basic properties in the bulk composite, thus these composites are good candidates as magnetoelectric materials.  相似文献   

9.
Layered nanostructures (LNs) of the commercial ferroelectric Pb(Zr0.53Ti0.47)O3 (PZT) and the natural ferroic relaxor Pb(Fe0.66W0.33)O3 (PFW) were fabricated with a periodicity of PZT/PFW/PZT (~5/1/5 nm, thickness ~250 nm) on MgO substrates by pulsed laser deposition. The dielectric behavior of these LNs were investigated over a wide range of temperatures and frequencies, observing Debye-type relaxation with marked deviation at elevated temperatures (>400 K). High dielectric constant and very low dielectric loss were observed below 100 kHz and 400 K, whereas the dielectric constant decreases and loss increases with increase in frequency, similar to relaxor ferroelectrics. Asymmetric ferroelectric hysteresis loops across UP and DOWN electric field were observed with high remanent polarization (Pr) of about 33 μC/cm2. High imprint (~5–7 V across 250 nm thin films) were seen in ferroelectric hysteresis that may be due to charge accumulation at the interface of layers or significant amount of strain (~3.21) across the layers. Room temperature ferromagnetic hysteresis was observed with remanent magnetization 5.32 emu/cc and a coercive field of ~550 Oe. Temperature and field dependent leakage current densities showed very low leakage ~10−7–10−5 A/cm2 over 500 kV/cm. We observed imprint in hysteresis that may be due to charge accumulation at the interface of layers or active role of polar nano regions (PNRs) situated in the PFW regions.  相似文献   

10.
The ac electrical properties of some lithium silicate glasses and glass-ceramics containing varying proportions of Y2O3 and/or Fe2O3 were measured to investigate their electronic hopping mechanism. There is a clear variation of these properties with composition. The obtained results were related to the concentration and role of Y2O3 and/or Fe2O3 in the lithium silicate glass structure. In crystalline solids the electrical properties data obtained were correlated to the type and content of the mineral phases formed as indicated by X-ray diffraction analysis (XRD). The conductivity, dielectric constant and dielectric loss of the studied glasses were studied using the frequency response in the interval 30 Hz–100 KHz and the effect of compositional changes on the measured properties was investigated. The measurements revealed that the electrical responses of the samples were different and complex. The addition of Y2O3 generally, decreased the ac conductivity, dielectric constant and dielectric losses of the lithium silicate glasses. The addition of Fe2O3 in Y2O3-containing glasses increases the conductivity, while, the dielectric constant and dielectric losses were found to be decreased. However, the addition of Fe2O3 instead of Y2O3 led to decrease the ac conductivity and increased their dielectric constant and dielectric losses. The obtained data were argued to the internal structure of the lithium silicate glass and the nature or role-played by weakness or rigidity of the structure of the sample. Lithium disilicate-Li2Si2O5, lithium metasilicate-Li2SiO3, two forms of yttrium silicate Y2Si2O7 & Y2SiO5, iron yttrium oxide-YFeO3, lithium iron silicate-LiFeSi2O6 and α-quartz phases were mostly developed in the crystallized glasses. The conductivity of the crystalline materials was found to be relatively lower than those of the glass. At low frequency, as the Y2O3 content increased the ac conductivity, dielectric constant and dielectric loss data of the glass-ceramics decreased. However, the addition of Fe2O3 to the Y2O3 containing glass-ceramic led to increase the conductivity. The addition of high content of Fe2O3 instead of Y2O3 in the glass ceramic led to increase the ac conductivity.  相似文献   

11.
A new member of lead-free piezoelectric ceramics of the BNT-based group, (1 − x)Bi0·5Na0·5TiO3−x BaNb2O6, was prepared by conventional solid state reaction and its dielectric properties and relaxation was investigated. X-ray diffraction showed that BaNb2O6 diffused into the lattice of Bi0·5Na0·5TiO3 to form a solid solution with perovskite-type structure. A diffuse character was proved by the linear fitting of the modified Curie-Weiss law. The temperature dependence of dielectric constant at different frequencies revealed that the solid solution exhibited relaxor characteristics different from classic relaxor ferroelectrics. The samples with x = 0·002 and 0·006 exhibited obvious relaxor characteristics near the low temperature dielectric abnormal peak, T f, and the samples with x = 0·010 and 0·014 exhibited obvious relaxor characteristics between room temperature and T f. The mechanism of relaxor behaviour was also discussed according to the macro-domain to micro-domain transition theory.  相似文献   

12.
The nanocrystalline fine powders (∼80 nm) of (Ba1−x La x )(Fe2/3W1/3)1−x/4O3, (BLFW) (x = 0.0, 0.05, 0.10 and 0.15) were synthesized with a combined mechanical activation and conventional high-temperature solid-state reaction methods. Preliminary X-ray structural analysis of pellet samples (prepared from fine powders) showed formation of a single-phase tetragonal system. Detailed studies of dielectric properties (εr and tan δ) exhibit that these parameters are strongly dependent on frequency, temperature and La composition. The La-substitution increases the dielectric constant and decreases the tan δ up to 10% substitutions of La at the Ba-site, and then reversed the variation, and hence this composition is considered as a critical composition. This observation was found valid for structure, microstructures, dielectric constant, electrical conductivity, JE characteristics and impedance parameters also. Like in other perovskites (PZT, BZT), La substitution plays an important role in tailoring the properties of Ba(Fe2/3W1/3)O3 ceramics.  相似文献   

13.
Pellets of ceramic Na1−xKxNbO3 (x = 0, 0.2 and 0.5), were prepared by conventional solid-state reaction method. Prepared samples were characterized using XRD and SEM. The frequency and temperature variation of dielectric constant, loss tangent and dielectric conductivity of prepared samples were measured in the frequency range from 10 KHz-1 MHz, and in the temperature range from 50–250°C for x = 0.2 and 0.5, and between 50 and 480°C for x = 0 compositions. It was observed that the dielectric constant and loss tangent decrease, and conductivity increases with increasing frequency. Near the transition temperature the material shows anomalous behaviour for the observed properties, and the peaks of dielectric constant and loss tangent were observed shifting towards lower temperature with increasing frequency.  相似文献   

14.
Polycrystalline samples of mixed composites of Ni0.93Co0.02Mn0.05Fe2O4 + BaTiO3 were prepared by conventional double sintering ceramic method. The phase analysis was carried out by using X-ray diffraction technique. Variation of dc resistivity and thermo emf was studied as a function of temperature. AC conductivity (σac) was investigated in the frequency range 100 Hz–1 MHz. The loss tangent (tan δ) measurements conclude that the conduction mechanism in these samples is due to small polaron hopping. The magnetoelectric conversion factor, i.e. dc(ME) H was studied as a function of intensity of magnetic field and the maximum value 407 μV/cm/Oe was observed at a field of 0.8 kOe in a composite with 85% BaTiO3 and 15% Ni0.93Co0.02Mn0.05Fe2O4 phase.  相似文献   

15.
The LiCo3/5Fe1/5Mn1/5VO4 compound was successfully synthesized by solution-based chemical method. The variation of dielectric constant (εr) with frequency at different temperatures shows a dispersive behavior at low frequencies. Temperature dependence of εr at different frequencies indicates dielectric anomalies in εr at temperature (Tmax) = 220, 235, 245, 260 and 275 °C with (εr)max ~ 6,830, 2,312, 1,224, 649 and 305 for 10, 50, 100, 200 and 500 kHz, respectively. The variation of tangent loss with frequency at different temperatures shows the presence of dielectric relaxation in the material. The variation of relaxation time as a function of temperature follows the Vogel-Fulcher relation.  相似文献   

16.
This paper describes the structural, magnetic, and dielectric properties of Gd3+ substituted cobalt–copper ferrite. The influence of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt–copper ferrite was investigated through various characterization techniques. Thermal analysis was carried out on the prepared gel to know the combustion and calcination temperature. The detailed structural analysis suggests that the substitution of a Fe3+ ion with a Gd3+ ion at B site results in lattice distortion, modification in crystallite size and grain size of the material. X-ray photoelectron spectroscopy confirmed the oxidation states of the elements present. Magnetic measurement performed at 300 and 50 K depicts the decrease in saturation magnetization (Ms) and increase in coercivity (Hc) with Gd3+ substitution in the cobalt–copper spinel ferrite. The dielectric measurements acquired over a wide range of frequencies and temperature showed an increase in dielectric constant with increasing Gd3+ concentration.  相似文献   

17.
In this paper, the structural and dielectric properties of BNO (BiNbO4) was investigated as a function of the external RF frequency and temperature. The BNO Ceramics, prepared by the conventional mixed oxide method and doped with 3, 5 and 10 wt. % Bi2O3–PbO were sintered at 1,025 °C for 3 h. The X-ray diffraction patterns of the samples sintered, shown the presence of the triclinic phase (β-BNO). In the measurements obtained at room temperature (25 °C) was observed that the largest values of dielectric permittivity (ε r ) at frequency 100 kHz, were for the samples: BNO5Bi (5 wt. % Bi2O3) and BNO5Pb (5 wt. % PbO) with values ε r ~ 59.54 and ε r ~ 78.44, respectively. The smaller values of loss tangent (tan δ) were for the samples: BNO5Bi and BNO3Pb (3 wt. % PbO) with values tan δ ~ 5.71 × 10−4 and tan δ ~ 2.19 × 10−4, respectively at frequency 33.69 MHz. The analysis as a function of temperature of the dielectric properties of the samples, obtained at frequency 100 kHz, showed that the larger value of the relative dielectric permittivity was about ε r ~ 76.4 at temperature 200 °C for BNO5Pb sample, and the value smaller observed of dielectric loss was for BNO3Bi sample at temperature 80 °C, with about tan δ ~ 5.4 × 10−3. The Temperature Coefficient of Capacitance (TCC) values at 1 MHz frequency, present a change of the signal from BNO (−55.06 ppm/°C) to the sample doped of Bi: BNO3Bi (+86.74 ppm/°C) and to the sample doped of Pb: BNO3Pb (+208.87 ppm/°C). One can conclude that starting from the BNO one can increase the doping level of Bi or Pb and find a concentration where one have TCC = 0 ppm/°C, which is important for temperature stable materials applications like high frequency capacitors. The activation energy (H) obtained in the process is approximately 0.55 eV for BNO sample and increase with the doping level. These samples will be studied seeking the development ceramic capacitors for applications in radio frequency devices.  相似文献   

18.
Two new A6B5O18 type cation-deficient perovskites Ba5LnTi2Nb3O18 (Ln = La, Nd) were prepared by the conventional solid-state reaction route. The phase and structure of the ceramics were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). Both compounds crystallize in the trigonal system. Ba5LaTi2Nb3O18 has a dielectric constant of 56.6, a high quality factors (Qu × f > 16,700 at 4.3331 GHz), and a relatively large temperature coefficient of resonant frequency (f) + 142 ppm°C–1 at room temperature; Ba5NdTi2Nb3O18 has a higher dielectric constant of 47.3 with high quality factors Qu × f > 15,000 at 4.6830 GHz, and f + 128 ppm°C–1.  相似文献   

19.
The effects of replacement of MgO by CaO on the sintering and crystallization behavior of MgO–Al2O3–SiO2 system glass-ceramics were investigated. The results show that with increasing CaO content, the glass transition temperature firstly increased and then decreased, the melting temperature was lowered and the crystallization temperature of the glass-ceramics shifted clearly towards higher temperatures. With the replacement of MgO by less than 3 wt.% CaO, the predominant crystalline phase in the glass-ceramics fired at 900 °C was found to be α-cordierite and the secondary crystalline phase to be μ-cordierite. When the replacement was increased to 10 wt.%, the predominant crystalline phase was found to be anorthite and the secondary phase to be α-cordierite. Both thermal expansion coefficient (TCE) and dielectric constant of samples increases with the replacement of MgO by CaO. The dielectric loss of sample with 5 wt.% CaO fired at 900 °C has the lowest value of 0.08%. Only the sample containing 5 wt.% and10 wt.% CaO (abbreviated as sample C5 and C10) can be fully sintered before 900 °C. Therefore, a dense and low dielectric loss glass-ceramic with predominant crystal phase of α-cordierite and some amount of anorthite was achieved by using fine glass powders (D50 = 3 μm) fired at 875–900 °C. The as-sintered density approaches 98% theoretical density. The flexural strength of sample C5 firstly increases and then decreases with sintering temperature, which closely corresponds to its relative density. The TCE of sample C5 increases with increasing temperature. The dielectric property of sample C5 sintered at different temperatures depends on not only its relative density but also its crystalline phases. The dense and crystallized glass-ceramic C5 exhibits a low sintering temperature (≤900 °C), a fairly low dielectric constant (5.2–5.3), a low dielectric loss (≤10−3) at 1 MHz, a low TCE (4.0–4.25 × 10−6 K−1), very close to that of Si (∼3.5 × 10−6 K−1), and a higher flexural strength (≥134 MPa), suggesting that it would be a promising material in the electronic packaging field.  相似文献   

20.
Single tetragonal La1.5Sr0.5CoO4 ceramics with the space group of I 4/mmm (139) were prepared by a solid-state reaction process, and dielectric characteristics were investigated on a broad frequency and temperature range. There was one obvious dielectric relaxation around room temperature plus a low temperature upturn on the curve of temperature dependence of dielectric properties for La1.5Sr0.5CoO4 ceramics. This dielectric relaxation was a thermal-activated process. It should be attributed to the mixed-valence structure (Co2+/Co3+) since its activation energy was similar to that of small polaronic hopping process. After annealing the sample in O2 atmosphere, dielectric constants and ac conductivities of La1.5Sr0.5CoO4 ceramics increased and decreased after annealing the sample in N2 atmosphere. This abnormal phenomenon should be attributed to the variation of concentration for holes (Co3+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号