首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant volatiles from cabbage and chrysanthemum were studied as to how they affect behavior of the cabbage moth, Mamestra brassicae (L.). Chemical, electrophysiological, and behavioral techniques were used. The electroantennographic (EAG) evaluation of selected compounds from Brassi-caceae showed that isothiocyanates (NCS) elicited weak responses, and some did not evoke significant EAG responses at all. Green leaf volatiles (GLVs) evoked the strongest responses in both male and female antennae. The capacity of NCS to stimulate upwind flight of mated females was not different at doses of 10–7, 10–6, or 10–5 g when tested in a wind tunnel. At the higher doses, allyl NCS stimulated upwind flight in the females more than the other compounds. Allyl NCS was significantly better than the other compounds at stimulating females to land on targets. Mated females flew upwind and landed on the targets with allyl NCS more often than virgin females and males. With respect to the behavioral activity of GLVs, only (E)-2-hexenal and (Z)-3-hexenyl acetate elicited upwind flight and landing in females. Ten compounds were identified from a chrysanthemum extract by using coupled gas chromatography–electroantennography. Five of these, (Z)-3-hexenyl acetate, 1-8-cineole, -terpinene, chrysanthenone, and camphor, elicited upwind flight of mated females, but only three stimulated landing.  相似文献   

2.
A synthetic mixture of nine green leaf volatiles (GLVs) including linalool was tested on antennae of Ips typographus (L.) with coupled gas chromatographic–electroantennographic detection (GC-EAD). Strong responses were found to 1-hexanol, (Z)-3-hexen-1-ol, and (E)-2-hexen-1-ol. Weak responses were recorded to (E)-3-hexen-1-ol, (Z)-2-hexen-1-ol and linalool, while hexanal, (E)-2-hexenal and (E)-3-hexenyl acetate elicited no EAD responses. In a laboratory walking bioassay, the attraction of I. typographus females to a synthetic pheromone source was significantly reduced when a mixture of the three most EAD-active GLV alcohols was added to the source. Further reduction in response was obtained when these three alcohols were combined with verbenone (Vn). In field trapping experiments, a blend of 1-hexanol, (Z)-3-hexen-1-ol, and (E)-2-hexen-1-ol reduced I. typographus trap catches by 85%, while ca. 70% reduction of trap catch was achieved by Vn or a blend of (E)-3-hexen-1-ol, (Z)-2-hexen-1-ol, and linalool. The strongest disruptive effect was found when Vn plus a blend of the three most EAD active GLV alcohols was added to the pheromone trap (95% catch reduction). Adding the blend of the three most EAD active alcohols to pheromone-baited traps significantly reduced the proportion of males captured. These three GLV alcohols were also disruptive in the laboratory and in the field when tested individually. Hexanal, (E)-2-hexenal, and (Z)-3-hexenyl acetate were inactive both in the lab and in the field. Our results suggest that these nonhost green leaf alcohols may explain part of the host selection behavior of conifer-attacking bark beetles and may offer a source of inhibitory signals for alternative management strategy for forest protection.  相似文献   

3.
Coupled gas chromatography-electroantennogram detection (GC-EAD) analysis of volatiles from tropical almond fruit, Terminalia catappa L., revealed 22 compounds that were detected by antennae of oriental fruit fly females, Bactrocera dorsalis (Hendel). Both solid-phase microextraction (SPME) and Porapak Q were used for sampling odors in fruit headspace, with SPME collections producing larger EAD responses from a greater number of compounds. Geranyl acetate and methyl eugenol elicited the largest EAD responses. A synthetic blend containing SPME collected, EAD stimulatory compounds showed female-biased attraction in laboratory wind tunnel bioassays, but heavily male-biased trap captures in a larger olfactometer arena. A nine-component subset of compounds eliciting relatively small EAD responses (EAD minor) and consisting of equal parts ethanol, ethyl acetate, ethyl hexanoate, hexyl acetate, linalyl acetate, ethyl nonanate, nonyl acetate, ethyl cinnamate, and (E)-β-farnesene, attracted mainly females. This EAD minor blend was as attractive to females and much less attractive to males when compared to torula yeast in field cage experiments using glass McPhail traps. Similar results were obtained with outdoor rotating olfactometer tests in which the EAD minor blend was almost completely inactive for males.  相似文献   

4.
We have identified five compounds from the headspace of calling male Mediterranean fruit flies (medfly),Ceratitis capitata (Wiedemann), and three compounds from the headspace of ripe mango (Mangifera indica L). using coupled gas chromatographic-electroantennographic (GC-EAG) recordings, coupled gas chromatographic-mass spectrometric (GC-MS) analysis, and electroantennographic (EAG) assays of standards. The male-produced volatiles eliciting responses from female antennae were ethyl-(E)-3-octenoate, geranyl acetate, (E,E)--farnesene, linalool, and indole. An EAG dose-response test of linalool enantiomers and indole with female medfly antennae showed relatively strong EAG activities, but no significant difference between (R)-(-)-linalool and (S)-(+)-linalool. The three mango volatiles were identified as (1S)-(-)--pinene, ethyl octanoate, and-caryophyllene. In addition, a strong antennal response was recorded from a contaminant,-copaene, present in a commercial sample of-caryophyllene. The EAG response amplitudes from both male and female antennae to the above three mango volatiles were significantly greater than to a hexanol control. For both male and female medfly antennae, the greatest EAG responses were elicited by-caryophyllene followed by ethyl octanoate. The mean EAG responses of female antennae to-caryophyllene and (1S)-(-)--pinene were significantly greater than those of male antennae.  相似文献   

5.
We describe a method using paraffin oil solutions and gas chromatography to measure and correct for differences in volatility among test compounds applied to filter paper and to address the problem of minimizing solvent contributions to EAG responses. To examine the effect of the volatility bias, we evaluated the EAG responses of female fir coneworm, Dioryctria abietivorella, to five volatile plant compounds, using a new method to normalize EAG responses to account for the loss of antennal sensitivity that occurs over time. Stimuli were generated either from equimolar (uncorrected) solutions or from corrected solutions that were adjusted to yield equimolar airborne concentrations in the air puffed over antennae. When uncorrected solutions were tested, the two most volatile compounds, (E)-2-hexenal and (E)-3-hexenyl acetate, elicited significantly larger EAG responses than three terpenes. When corrected concentrations were tested, the ranking of these responses changed: (E)-2-hexenal elicited significantly smaller EAGs than (–)--pinene, (–)-limonene, and (E)-3-hexenyl acetate. On the other hand, there was no effect on the ranking of EAG responses to the two monoterpenes and a sesquiterpene, (–)-trans-caryophyllene, relative to each other. Normalization of EAG data did not affect the overall results (i.e., stimulus rankings) but did reduce their variance within preparations. The results show that when compounds with widely different volatilities are compared in olfactory bioassays, the concentrations of test solutions should be adjusted to produce emissions with equimolar airborne concentrations.  相似文献   

6.
Our objective was to identify the semiochemicals that mediate attraction of the webbing clothes moth (WCM), Tineola bisselliella (Lepidoptera: Tineidae), to suitable larval habitat. Coupled gas chromatographic-electroantennographic detection (GC-EAD) analyses of Porapak Q-captured bioactive volatiles from horseshoe crab, and dried but untanned vertebrate pelts revealed numerous EAD-active volatiles. These volatiles were identified by comparative GC-mass spectrometry and GC-EAD analyses of natural and synthetic compounds. A blend of 28 synthetic candidate semiochemicals attracted both male and female WCM. Experiments deleting various components determined that saturated aldehydes—but not unsaturated aldehydes, saturated hydrocarbons, saturated alcohols, or ketones—were essential for blend attractiveness. A blend of nonanal, the single most attractive aldehyde, in combination with geranylacetone was more attractive to WCM than the 28-component blend or dried, untanned animal pelt. Selection of larval habitat resides more with male than female WCM, as indicated by stronger EAD responses from male than female antennae to habitat-derived semiochemicals, and more selective and early response to habitat cues by males than females. Exploitation of nonanal and geranylacetone as resource-derived semiochemicals by both adult WCM and its larval parasitoid, Apanteles carpatus, is an example of convergent semiochemical parsimony.  相似文献   

7.
Headspace volatiles were collected from undamaged foliage of carrot,Daucus carota, a host-plant species of the black swallowtail butterfly,Papilio polyxenes. The volatiles were fractionated over silica on an open column, and the fractions were tested in behavioral assays withP. polyxenes females in laboratory experiments. The polar fractions, as well as the total mixture of volatiles, increased the landing frequency and the number of eggs laid on model plants with leaves bearing contact-oviposition stimulants. The nonpolar fraction, containing the most abundant compounds in carrot odor, was not stimulatory. Gas Chromatographic (GC) separation of the fractions was coupled with electroantennogram (EAG) recordings to identify the compounds perceived byP. polyxenes females. The EAG activity corresponded to the behavioral activity of the fractions. None of the nonpolar compounds, identified as various monoterpenes, evoked a major EAG response, but several constituents of the polar fractions elicited high EAG responses. Sabinene hydrate (both stereoisomers), 4-terpineol, bomyl acetate, and (Z)-3-hexenyl acetate were identified by GC-MS as active compounds.  相似文献   

8.
Using gas chromatography with flame ionization detection (FID) and electroantennographic detection (EAD) in parallel, butanoic acid, skatole, and (E)-2,6-dimethyl-6-octen-2-ol were identified as constituents of the abdominal sex-attracting secretion of the male dung beetle, Kheper subaeneus, which reproducibly elicited EAD responses in male and female antennae. This is the first report of the occurrence of (E)-2,6-dimethyl-6-octen-2-ol as a natural product, for which the name (E)-subaeneol is proposed. In some experiments, a few other constituents of the secretion also gave reproducible responses in specific male and female antennae but did not elicit responses when the analyses were repeated with other antennae. The major volatile constituent of the secretion, identified as (S)-(+)-2,6-dimethyl-5-heptenoic acid, is one of these EAD-active compounds. Both this compound and (E)-2,6-dimethyl-6-octen-2-ol were synthesized from authentic starting materials for comparison with the natural products.  相似文献   

9.
Volatiles from hosts, non-hosts, interspecifics, and conspecifics of the Asian larch bark beetle, Ips subelongatus Motsch., were analyzed using both gas chromatographic-electroantennographic detection (GC-EAD) and gas chromatography/mass spectrometry (GC-MS) techniques, and field trapping bioassays in Inner Mongolia, China. GC-EAD experiments indicated that I. subelongatus antennae (both sexes) strongly responded not only to the major male-produced conspecific components, ipsenol, and ipsdienol, but also to other bark beetle compounds (cis-verbenol and verbenone), host monoterpenes (α-pinene, β-pinene, and para-cymene) from Larix sp. logs, and non-host leaf (green leaf volatiles and geranyl acetone) and bark (C8-alcohols and trans-conophthorin) volatiles. Repeatable EAD responses were also found to two compounds from hindgut extracts that are undetectable by GC. One of these minor compounds was identified as amitinol. Field trapping experiments showed that the EAD-active, major male-hindgut component, racemic ipsenol, is the only individual compound that significantly attracted both sexes of I. subelongatus, whereas all other compounds, including previously reported pheromone components of European Ips cembrae, ipsdienol and 3-methyl-3-buten-1-ol, were unattractive. Ipsdienol, 3-methyl-3-buten-1-ol, or their binary blend had no synergistic or antagonistic effects on I. subelongatus attraction when combined with ipsenol, whereas cis-verbenol (a synomone) and verbenone (the antiaggregation semiochemical) inhibited its attraction to the ipsenol-containing attractive blend. A mixture of three EAD-active host monoterpenes, α-pinene, β-pinene, and para-cymene, was unattractive, but interrupted the pheromone response of I. subelongatus. Geranyl acetone, one of the strong EAD-active non-host volatiles also significantly reduced the number of I. subelongatus captured in traps baited with ipsenol-containing attractive blend. Our results add support to the recent phylogenetic finding that European and Asian larch bark beetles should be regarded as two distinct species: I. cembrae infecting larch in Europe and I. subelongatus infesting larch in Asia.  相似文献   

10.
Chemical investigation of a fmale balloon-like organ of the European chafer, Rhizotrogus majalis (Razoumowsky), with GC-EAD has resulted in the identification of female-specific compounds, (R)-3- hydroxybutan-2-one, (2R,3R)-2,3-butanediol, and meso-2,3-butanediol that are specifically EAD-active with male antennae. No behavioral role for any of the EAD active compounds could be discerned with this species.  相似文献   

11.
Aspects of the chemical ecology of the black-banded oak borer, (BBOB) Coroebus florentinus (Coleoptera: Buprestidae), were studied. Odors produced by males and females were similar, both qualitatively and quantitatively. Nonanal, decanal, and geranylacetone, identified in the headspace of both sexes, elicited strong electroantennographic responses from male antennae, but not from female antennae. In dual-choice olfactometer experiments, a blend of these three compounds was attractive to both sexes; males responded to decanal alone, while females responded to geranylacetone alone, suggesting that these compounds are responsible for activity of the blend to the respective sexes. Antennae of both sexes responded electroantennographically to the green leaf volatiles (E)-2-hexenal, (E)-2-hexenol, 1-hexanol, (Z)-3-hexenyl acetate, and n-hexyl acetate, all identified from the host plant Quercus suber. In behavioral experiments, only females were attracted to host-plant odors, and in tests with synthetic compounds, females were attracted to (E)-2-hexenol, 1-hexanol, and (Z)-3-hexenyl acetate. It is likely that these compounds play a role in foraging and/or oviposition behavior of BBOB females.  相似文献   

12.
Y-tube olfactometer bioassays and combined gas chromatography–electroantennographic detector (GC-EAD) analyses were performed to investigate the specific odors utilized as host location cues by the bark beetle parasitoid, Roptrocerus xylophagorum, originating from the southeastern United States. R. xylophagorum parasitizes several economically important holarctic bark beetle species and females oviposit preferentially on late larval stages. Both female and male parasitoids were tested with volatiles derived from host infestations of either Dendroctonus frontalis, the southern pine beetle, or Ips grandicollis, the southern pine engraver. Tested volatiles were steam distillates from the bark of loblolly pine, Pinus taeda, infested with larvae of the respective bark beetle species. Combined gas chromatography–mass spectrometry (GC-MS) was employed for identification and quantification of the compounds in the steam distillates. To confirm the EAD activity of identified compounds, GC-EAD analyses were repeated with a synthetic blend composed predominantly of compounds in the crude extracts that had revealed apparent electrophysiological activity. In Y-olfactometer bioassays, female parasitoids were attracted to both of the above-mentioned distillates. Male parasitoids were tested with one of the distillates but failed to respond. In GC-EAD analyses, the sexes displayed similar relative sensitivities to the components of the blends. Males exhibited generally higher amplitudes of response to the tested compounds than females. Monoterpene hydrocarbons associated with the constitutive resin of the host tree did not elicit significant EAD responses. Compounds known to be associated specifically with the host–tree complex, such as certain oxygenated monoterpenes, generated the greatest EAD responses. Female parasitoids were attracted by a synthetic blend composed of several of the EAD active oxygenated monoterpenes.  相似文献   

13.
Olfactory reception of potential pheromones and host-plant odors by male and female tarnished plant bugs (TPBs),Lygus lineolaris (Hemiptera: Miridae), was investigated by utilizing electroantennogram (EAG) techniques. In general, EAGs were similar between the sexes. Among 31 compounds of seven chemical groups tested, insect-produced butyrates and host-plant-containing green leaf volatiles (GLVs) were the most active. Hexyl butyrate and (E)-2-hexenyl butyrate elicited greater EAGs in males than in females. Females responded with significantly greater EAGs to alcohol and aldehyde GLVs than to their acetate derivatives. Among GLVs, sexual dimorphism was also observed in response to (E)-2-hexenol and (E)-2-hexenal. Females were more sensitive to the monoterpene geraniol than were males. While nonanal was the most stimulatory compound tested, no sexual differences in EAGs to this compound were observed. These studies reveal olfactory receptors on TPB antennae responsive to insect and host-plant volatiles that are likely to play a role in host finding and sexual attraction.  相似文献   

14.
Previous laboratory studies have shown that the mirid Lygus hesperus is attracted to volatiles emitted from alfalfa; feeding damage increases the amounts of several of these volatiles, and visual cues can enhance attraction further. The present study tested single plant volatiles in electrophysiological and behavioral trials with L. hesperus. Electroantennogram (EAG) analyses indicated that antennae responded to most plant volatiles included in the test, and that when gender differences were observed, males usually were more responsive than females. Antennal responses to the alcohols ((E)-3-hexenol, (Z)-3-hexenol, 1-hexanol), the acetate (E)-2-hexenyl acetate, and the aldehyde (E)-2-hexenal were among the strongest. Moderate responses were observed for (E)-β-ocimene, (E,E)-α-farnesene, (±)-linalool, and methyl salicylate. A dose dependent response was not observed for several terpenes (β-myrcene, β-caryophyllene, (+)-limonene, or both (R)-(+)- and (S)-(−)-α-pinenes). EAG responses, however, were not always consistent with behavioral assays. In Y-tube bioassays, males did not exhibit a positive behavioral response to any of the compounds tested. Instead, males were repelled by (E)-2-hexenyl acetate, (±)-linalool, (E,E)-α-farnesene, and methyl salicylate. In contrast, female L. hesperus moved upwind towards (R)-(+)-α-pinene, (E)-β-ocimene, and (E,E)-α-farnesene, and showed a negative response towards (Z)-3-hexen-1-ol, (S)-(−)-α-pinene, and methyl salicylate. This study emphasizes the use of multiple approaches to better understand host plant finding in the generalist herbivore L. hesperus.  相似文献   

15.
Small trunk pieces of a freshly felled 10-year-old oil palm,Elaeis quineensis (Jacq.), were placed in a modified Nalgene desiccator, and volatiles captured for six days on Porapak Q. Gas chromatographic (GC) analysis of Porapak-Q-trapped volatiles with both flame ionization (FID) and electroantennographic detection (EAD) using male or femaleR. phoenicis antennae revealed several EAD-active compounds. They were identified as: ethyl acetate, ethyl propionate, isobutyl propionate, ethyl butyrate, and ethyl isobutyrate. In field experiments in the La Me Research Station, Côte d'Ivoire, ethyl propionate (50 mg/24 hr) but not all esters combined (50 mg/24 hr each) significantly increased capture ofR. phoenicis in pheromone-baited (3 mg/24 hr) traps. One kilogram of 1- to 3-day-old palm tissue was significantly more effective than ethyl propionate in enhancing pheromone attraction. Superior attraction of palm tissue may be attributed to additional as yet unknown semiochemicals. Alternatively, release rates and/or ratios of synthetic volatiles differed from those of palm tissue at peak attraction.  相似文献   

16.
The dried, powdered roots of buffalo gourd, Cucurbita foetidissima, were tested in a cornfield and shown to attract adult northern and southern corn rootworm beetles. Coupled gas chromatography–electroantennography (GC-EAG) analyses of headspace samples of the root powder showed several GC-EAG-active compounds on the antennae of female northern, southern, and western corn rootworms. Among other techniques, solid-phase microextraction and GC-mass spectrometry identified the following GC-EAG-active compounds: hexanol, nonanal, 1-octen-3-ol, benzaldehyde, benzyl alcohol, (E)-3-octen-2-one, (E,E)-3,5-octadien-2-one, and (E,Z)-3,5-octadien-2-one. EAG dose–response studies of several of the identified root powder volatiles also were performed and compared with results from known attractants. Field tests of synthetic root powder volatiles in commercial cornfields showed that northern corn rootworm adults were attracted to (E,E)-3,5-octadien-2-one. The antennae of the Diabrotica species and the field tests showed specificity for different geometrical isomers of 3,5-octadien-2-one, with a behavioral preference for (E,E)-3,5-octadien-2-one. In addition, we have shown that the efficacy of buffalo gourd root powder as a feeding stimulant and arrestant can be enhanced for northern and western corn rootworm adults by augmenting buffalo gourd root powder with additional (E,E)-3,5-octadien-2-one.  相似文献   

17.
Three electroantennogram (EAG)-active components were detected by gas chromatography coupled to an electroantennographic detector (GC–EAD) analysis of a hexane extract of the pheromone glands of the persimmon fruit moth, Stathmopoda masinissa. These compounds were identified as (4E,6Z)-4,6-hexadecadienal (E4,Z6-16:Ald) and the corresponding acetate (E4,Z6-16: OAc) and alcohol (E4,Z6-16:OH) by mass spectral, GC retention time (RT), and microchemical test data. The characteristic base peak of the aldehyde at m/z 84 provided a crucial piece of information suggesting the possibility of a 4,6-diene structure. The (4E,6Z)-isomer elicited the strongest EAG responses among the four geometrical isomers of each synthetic 4,6-hexadecadienyl compound. In a laboratory bioassay, only E4,Z6-16:OAc elicited male moth behavioral activity significantly different from the control; the activity of the acetate was not affected by addition of the aldehyde and alcohol. A preliminary field trial confirmed that E4,Z6-16:OAc as a single component attracted male moths. The possible roles of E4,Z6-16:Ald and E4,Z6-16:OH as components of lures for field use remain to be determined.  相似文献   

18.
We recorded electroantennograms of male and female Lygocoris pabulinus antennae to 63 insect and plant volatiles. EAGs were between 100 and 500 V. Overall, male EAGs were about twice the size of female EAGs. In both sexes, largest EAGs were recorded to (E)-2-hexenyl butanoate and (E)-2-hexen-1-ol. Response profiles were similar in both sexes. However, male antennae were more sensitive to a number of esters, especially the butanoates and pentanoates. Female antennae were more sensitive to nine of the 19 plant volatiles, i.e., to hexan-1-ol, heptan-1-ol, 1-octen-3-ol, 2-heptanone, (R)-carvone, linalool, geraniol, nerol, and methyl salicylate. Sexual differences in responses suggest that males are more sensitive to insect-produced pheromone-type compounds, whereas females are more sensitive to plant compounds for their orientation towards oviposition sites.  相似文献   

19.
The synthetic aggregation pheromone of the large milkweed bug, Oncopeltus fasciatus (Dallas) (Lygaeinae), also attracted males of the plant bug, Phytocoris difficilis Knight (Miridae). Field testing partial blends against the six-component blend comprising the Oncopeltus pheromone showed that cross-attraction of P. difficilis males was due to synergism between (E)-2-octenyl acetate and (E,E)-2,4-hexadienyl acetate. Hexyl acetate was abundant in the metathoracic scent gland (MSG) secretion of P. difficilis males, but because female P. difficilis could not initially be found in the field, further combinatorial tests were guided by prior research on the pheromones of two Phytocoris species in the western United States. The combination of hexyl, (E)-2-hexenyl, and (E)-2-octenyl acetates was as attractive to P. difficilis males as the milkweed bug pheromone, yet no milkweed bugs were drawn to this blend. Gas chromatographic (GC)-electroantennographic detection (EAD) and GC-mass spectrometric (MS) analyses of female P. difficilis MSGs determined that their secretion contained predominantly hexyl, (E)-2-hexenyl, and (E)-2-octenyl acetates (all strongly EAD-active)—the latter two compounds found only in trace amounts from males—plus five minor female-specific compounds, three of which were EAD-active. (E,E)-2,4-Hexadienyl acetate was not detected from P. difficilis females or males. The blend of the three major components, hexyl, (E)-2-hexenyl, and (E)-2-octenyl acetates (2:1.5:1 by volume), was as attractive as the blend of all six EAD-active compounds identified from females, indicating that this ternary blend constitutes the sex pheromone of P. difficilis. Hexyl acetate with (E)-2-octenyl acetate also attracted males of another species, P. breviusculus Reuter, but addition of (E)-2-hexenyl acetate and/or (E,E)-2,4-hexadienyl acetate inhibited attraction of P. breviusculus males. Attraction of P. difficilis males occurred mainly during the first half of scotophase. The possible neurophysiological basis for this asymmetrical cross-attraction is discussed.  相似文献   

20.
The leaf volatiles emitted from four nonhost tree species of Ips typographus, i.e. Betula pendula, B. pubescens, Populus tremula, and Sambucus nigra, were collected outdoors by headspace sampling in situ and analyzed by GC-MS. Three major classes of compounds, aliphatics [mainly green-leaf volatiles (GLVs)], monoterpenes, and sesquiterpenes, existed in all the deciduous tree species investigated. In June, when the bark beetles are searching in flight for host trees, GLVs mainly consisting of (Z)-3-hexenyl acetate and (Z)-3-hexen-1-ol were the dominant constituents in B. pendula and S. nigra. In B. pubescens and P. tremula, sesquiterpenes (and their derivatives) and monoterpenes made up the major part of whole volatile blends, respectively. Surprisingly, sesquiterpene alcohols and other oxides released from B. pubescens in considerable amounts were not found in the closely related species, B. pendula. By August, both the total volatiles and individual compounds significantly decreased, mainly due to the maturation of leaves, since the light intensity and temperatures during sampling were the same as in June. There were almost no volatiles detected from P. tremula and S. nigra leaves in August. The total emissions from these deciduous species were significantly different among the species, with B. pubescens releasing 5–10 times more than other species. Under the conditions of constant light intensity and humidity, emissions of both total volatiles and most individual components of severed B. pendula and S. nigra branches (with fresh leaves) increased according to a saturation curve from 16°C to 40°C. Ips typographus antennae responded strongly to green leaf alcohols: (Z)-3-hexen-1-ol, 1-hexanol, and (E)-2-hexen-1-ol, but not to aldehydes or acetates in GC-EAD analyses of B. pendula and B. pubescens leaf volatiles. No antennal responses to monoterpenes, sesquiterpenes, or sesquiterpene oxides were found. These three antennally active GLVs emitted from nonhost tree leaves might be indicators of a wrong habitat in the host selection of conifer bark beetles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号