首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Arabidopsis, NPR1 mediates the salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance (SAR). Here, we report the identification of another component, CPR 6, that may function with NPR1 in regulating PR gene expression. The dominant CPR 6-1 mutant expresses the SA/NPR1-regulated PR genes (PR-1, BGL 2, and PR-5) and displays enhanced resistance to Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2 in the absence of SAR induction. cpr 6-1-induced PR gene expression is not suppressed in the cpr 6-1 npr1-1 double mutant but is suppressed when SA is removed by salicylate hydroxylase. Thus, constitutive PR gene expression in cpr 6-1 requires SA but not NPR1. In addition, resistance to P. s. maculicola ES4326 is suppressed in the cpr 6-1 npr1-1 double mutant, despite expression of PR-1, BGL 2, and PR-5. Resistance to P. s. maculicola ES4326 must therefore be accomplished through unidentified antibacterial gene products that are regulated through NPR1. These results show that CPR 6 is an important regulator of multiple signal transduction pathways involved in plant defense.  相似文献   

2.
Coronatine is a phytotoxin produced by some plant-pathogenic bacteria. It has been shown that coronatine mimics the action of methyl jasmonate (MeJA) in plants. MeJA is a plant-signaling molecule involved in stress responses such as wounding and pathogen attack. In Arabidopsis thaliana, MeJA is essential for pollen grain development. The coi1 (for coronatine-insensitive) mutant of Arabidopsis, which is insensitive to coronatine and MeJA, produces sterile male flowers and shows an altered response to wounding. When the differential display technique was used, a message that was rapidly induced by coronatine in wild-type plants but not in coi1 was identified and the corresponding cDNA was cloned. The coronatine-induced gene ATHCOR1 (for A. thaliana coronatine-induced) is expressed in seedlings, mature leaves, flowers, and siliques but was not detected in roots. The expression of this gene was dramatically reduced in coi1 plants, indicating that COI1 affects its expression. ATHCOR1 was rapidly induced by MeJA and wounding in wild-type plants. The sequence of ATHCOR1 shows no strong homology to known proteins. However, the predicted polypeptide contains a conserved amino acid sequence present in several bacterial, animal, and plant hydrolases and includes a potential ATP/GTP-binding-site motif (P-loop).  相似文献   

3.
The cpr5 mutant was identified from a screen for constitutive expression of systemic acquired resistance (SAR). This single recessive mutation also leads to spontaneous expression of chlorotic lesions and reduced trichome development. The cpr5 plants were found to be constitutively resistant to two virulent pathogens, Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2; to have endogenous expression of the pathogenesis-related gene 1 (PR-1); and to have an elevated level of salicylic acid (SA). Lines homozygous for cpr5 and either the SA-degrading bacterial gene nahG or the SA-insensitive mutation npr1 do not express PR-1 or exhibit resistance to P. s. maculicola ES4326. Therefore, we conclude that cpr5 acts upstream of SA in inducing SAR. However, the cpr5 npr1 plants retained heightened resistance to P. parasitica Noco2 and elevated expression of the defensin gene PDF1.2, implying that NPR1-independent resistance signaling also occurs. We conclude that the cpr5 mutation leads to constitutive expression of both an NPR1-dependent and an NPR1-independent SAR pathway. Identification of this mutation indicates that these pathways are connected in early signal transduction steps and that they have overlapping functions in providing resistance.  相似文献   

4.
5.
The Arabidopsis NPR1 gene was previously shown to be required for the salicylic acid (SA)- and benzothiadiazole (BTH)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance. The dominant ssi1 (for suppressor of SA insensitivity) mutation characterized in this study defines a new component of the SA signal transduction pathway that bypasses the requirement of NPR1 for expression of the PR genes and disease resistance. The ssi1 mutation caused PR (PR-1, BGL2 [PR-2], and PR-5) genes to be constitutively expressed and restored resistance to an avirulent strain of Pseudomonas syringae pv tomato in npr1-5 (previously called sai1) mutant plants. In addition, ssi1 plants were small, spontaneously developed hypersensitive response-like lesions, accumulated elevated levels of SA, and constitutively expressed the antimicrobial defensin gene PDF1.2. The phenotypes of the ssi1 mutant are SA dependent. When SA accumulation was prevented in ssi1 npr1-5 plants by expressing the SA-degrading salicylate hydroxylase (nahG) gene, all of the phenotypes associated with the ssi1 mutation were suppressed. However, lesion formation and expression of the PR genes were restored in these plants by the application of BTH. Interestingly, expression of PDF1.2, which previously has been shown to be SA independent but jasmonic acid and ethylene dependent, was also suppressed in ssi1 npr1-5 plants by the nahG gene. Furthermore, exogenous application of BTH restored PDF1.2 expression in these plants. Our results suggest that SSI1 may function as a switch modulating cross-talk between the SA- and jasmonic acid/ethylene-mediated defense signal transduction pathways.  相似文献   

6.
The coi1 mutation defines an Arabidopsis gene required for response to jasmonates, which regulate defense against insects and pathogens, wound healing, and pollen fertility. The wild-type allele, COI1, was mapped to a 90-kilobase genomic fragment and located by complementation of coi1-1 mutants. The predicted amino acid sequence of the COI1 protein contains 16 leucine-rich repeats and an F-box motif. It has similarity to the F-box proteins Arabidopsis TIR1, human Skp2, and yeast Grr1, which appear to function by targeting repressor proteins for removal by ubiquitination.  相似文献   

7.
The cell death response known as the hypersensitive response (HR) is a central feature of gene-for-gene plant disease resistance. A mutant line of Arabidopsis thaliana was identified in which effective gene-for-gene resistance occurs despite the virtual absence of HR cell death. Plants mutated at the DND1 locus are defective in HR cell death but retain characteristic responses to avirulent Pseudomonas syringae such as induction of pathogenesis-related gene expression and strong restriction of pathogen growth. Mutant dnd1 plants also exhibit enhanced resistance against a broad spectrum of virulent fungal, bacterial, and viral pathogens. The resistance against virulent pathogens in dnd1 plants is quantitatively less strong and is differentiable from the gene-for-gene resistance mediated by resistance genes RPS2 and RPM1. Levels of salicylic acid compounds and mRNAs for pathogenesis-related genes are elevated constitutively in dnd1 plants. This constitutive induction of systemic acquired resistance may substitute for HR cell death in potentiating the stronger gene-for-gene defense response. Although cell death may contribute to defense signal transduction in wild-type plants, the dnd1 mutant demonstrates that strong restriction of pathogen growth can occur in the absence of extensive HR cell death in the gene-for-gene resistance response of Arabidopsis against P. syringae.  相似文献   

8.
To identify plant defense responses that limit pathogen attack, Arabidopsis eds mutants that exhibit enhanced disease susceptibility to the virulent bacterial pathogen Pseudomonas syringae pv maculicola ES4326 were previously identified. In this study, we show that each of four eds mutants (eds5-1, eds6-1, eds7-1, and eds9-1) has a distinguishable phenotype with respect to the degree of susceptibility to a panel of bacterial phytopathogens and the ability to activate pathogenesis-related PR-1 gene expression after pathogen attack. None of the four eds mutants exhibited observable defects in mounting a hypersensitive response. Although all four eds mutants were also capable of mounting a systemic acquired resistance response, enhanced growth of P. s. maculicola ES4326 was still apparent in the secondarily infected leaves of three of the eds mutants. These data indicate that eds genes define a diverse set of previously unknown defense responses that affect resistance to virulent pathogens.  相似文献   

9.
Wheat cDNAs that encode proteins PR-1.1 and PR-1.2 were cloned. Deduced amino acid sequences were homologous to those of pathogen-induced, basic PR-1 proteins from plants. Although expression of PR1.1 and PR1.2 genes was induced upon infection with either compatible or incompatible isolates of the fungal pathogen Erysiphe graminis, these genes did not respond to activators of systemic acquired resistance (SAR), such as salicylic acid (SA), benzothiadiazole (BTH), or isonicotinic acid (INA).  相似文献   

10.
11.
12.
We investigated the relative importance of specific Arabidopsis thaliana genes in conferring resistance to bacterial versus fungal pathogens. We first developed a pathosystem involving the infection of Arabidopsis accession Columbia with a virulent isolate of the obligate biotrophic fungal pathogen Erysiphe orontii. E. orontii elicited the accumulation of mRNAs corresponding to the defense-related genes PR1, BGL2 (PR2), PR5 and GST1, but did not elicit production of the phytoalexin camalexin or the accumulation of defensin (PDF1.2) or thionin (THI2.1) mRNAs. We tested a set of 15 previously isolated Arabidopsis phytoalexin deficient (pad), non-expresser of PR (npr) and enhanced disease susceptibility (eds) mutants that are more susceptible to Pseudomonas syringae for their susceptibility to E. orontii. Four of these mutants (pad4-1, npr1-1, eds5-1 and a double npr1-1 eds5-1 mutant) as well as Arabidopsis lines carrying a nahG transgene exhibited enhanced susceptibility to E. orontii and reduced levels of PR gene expression. Comparison of the PR gene induction patterns in response to E. orontii in the various mutants and in the nahG transgenics suggests the existence of NPR1-independent salicylate-dependent and NPR1-independent salicylate-independent defense gene activation pathways. Eleven other eds and pad mutants did not show measurable enhanced susceptibility to E. orontii, suggesting that these mutants are defective in factors that are not important for the limitation of E. orontii growth.  相似文献   

13.
Plant resistance (R) genes have evolved specific recognition capabilities in defense against pathogens. The evolution of R gene function and maintenance of R gene diversity within a plant species are therefore of great interest. In the Arabidopsis accession Wassilewskija, the RPP1 region on chromosome 3 contains four genetically linked recognition specificities, conditioning resistance to different isolates of the biotrophic oomycete Peronospora parasitica (downy mildew). We show that three of four tightly linked genes in this region, designated RPP1-WsA, RPP1-WsB, and RPP1-WsC, encode functional products of the NBS-LRR (nucleotide binding site-leucine-rich repeat) R protein class. They possess a TIR (Toll, interleukin-1, resistance) domain that is characteristic of certain other NBS-LRR-type R proteins, but in addition, they have unique hydrophilic or hydrophobic N termini. Together, the three RPP1 genes account for the spectrum of resistance previously assigned to the RPP1 region and thus comprise a complex R locus. The distinct but partially overlapping resistance capabilities conferred by these genes are best explained by the hypothesis that each recognizes a different pathogen avirulence determinant. We present evidence suggesting that the RPP genes at this locus are subject to the same selective forces that have been demonstrated for structurally different LRR-type R genes.  相似文献   

14.
Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. In Arabidopsis, nonpathogenic, root-colonizing Pseudomonas fluorescens bacteria trigger an induced systemic resistance (ISR) response against infection by the bacterial leaf pathogen P. syringae pv tomato. In contrast to classic, pathogen-induced systemic acquired resistance (SAR), this rhizobacteria-mediated ISR response is independent of salicylic acid accumulation and pathogenesis-related gene activation. Using the jasmonate response mutant jar1, the ethylene response mutant etr1, and the SAR regulatory mutant npr1, we demonstrate that signal transduction leading to P. fluorescens WCS417r-mediated ISR requires responsiveness to jasmonate and ethylene and is dependent on NPR1. Similar to P. fluorescens WCS417r, methyl jasmonate and the ethylene precursor 1-aminocyclopropane-1-carboxylate were effective in inducing resistance against P. s. tomato in salicylic acid-nonaccumulating NahG plants. Moreover, methyl jasmonate-induced protection was blocked in jar1, etr1, and npr1 plants, whereas 1-aminocyclopropane-1-carboxylate-induced protection was affected in etr1 and npr1 plants but not in jar1 plants. Hence, we postulate that rhizobacteria-mediated ISR follows a novel signaling pathway in which components from the jasmonate and ethylene response are engaged successively to trigger a defense reaction that, like SAR, is regulated by NPR1. We provide evidence that the processes downstream of NPR1 in the ISR pathway are divergent from those in the SAR pathway, indicating that NPR1 differentially regulates defense responses, depending on the signals that are elicited during induction of resistance.  相似文献   

15.
A new mutant called psi2 (for phytochrome signaling) was isolated by screening for elevated activity of a chlorophyll a/b binding protein-luciferase (CAB2-LUC) transgene in Arabidopsis. This mutant exhibited hypersensitive induction of CAB1, CAB2, and the small subunit of ribulose-1,5-bisphosphate carboxylase (RBCS) promoters in the very low fluence range of red light and a hypersensitive response in hypocotyl growth in continuous red light of higher fluences. In addition, at high- but not low-light fluence rates, the mutant showed light-dependent superinduction of the pathogen-related protein gene PR-1a and developed spontaneous necrotic lesions in the absence of any pathogen. Expression of genes responding to various hormone and environmental stress pathways in the mutant was not significantly different from that of the wild type. Analysis of double mutants demonstrated that the effects of the psi2 mutation are dependent on both phytochromes phyA and phyB. The mutation is recessive and maps to the bottom of chromosome 5. Together, our results suggest that PSI2 specifically and negatively regulates both phyA and phyB phototransduction pathways. The induction of cell death by deregulated signaling pathways observed in psi2 is reminiscent of retinal degenerative diseases in animals and humans.  相似文献   

16.
Selected nonpathogenic, root-colonizing bacteria are able to elicit induced systemic resistance (ISR) in plants. To elucidate the molecular mechanisms underlying this type of systemic resistance, an Arabidopsis-based model system was developed in which Pseudomonas syringae pv. tomato and Fusarium oxysporum f. sp. raphani were used as challenging pathogens. In Arabidopsis thaliana ecotypes Columbia and Landsberg erecta, colonization of the rhizosphere by P. fluorescens strain WCS417r induced systemic resistance against both pathogens. In contrast, ecotype RLD did not respond to WCS417r treatment, whereas all three ecotypes expressed systemic acquired resistance upon treatment with salicylic acid (SA). P. fluorescens strain WCS374r, previously shown to induce ISR in radish, did not elicit ISR in Arabidopsis. The opposite was found for P. putida strain WCS358r, which induced ISR in Arabidopsis but not in radish. These results demonstrate that rhizosphere pseudomonads are differentially active in eliciting ISR in related plant species. The outer membrane lipopolysaccharide (LPS) of WCS417r is the main ISR-inducing determinant in radish and carnation, and LPS-containing cell walls also elicit ISR in Arabidopsis. However, mutant WCS417rOA-, lacking the O-antigenic side chain of the LPS, induced levels of protection similar to those induced by wild-type WCS417r. This indicates that ISR-inducing bacteria produce more than a single factor that trigger ISR in Arabidopsis. Furthermore, WCS417r and WCS358r induced protection in both wild-type Arabidopsis and SA-nonaccumulating NahG plants without activating pathogenesis-related gene expression. This suggests that elicitation of an SA-independent signaling pathway is a characteristic feature of ISR-inducing biocontrol bacteria.  相似文献   

17.
Plant disease resistance (R) genes confer an ability to resist infection by pathogens expressing specific corresponding avirulence genes. In Arabidopsis thaliana, resistance to both bacterial and fungal pathogens, mediated by several R gene products, requires the NDR1 gene. Positional cloning was used to isolate NDR1, which encodes a 660-base pair open reading frame. The predicted 219-amino acid sequence suggests that NDR1 may be associated with a membrane. NDR1 expression is induced in response to pathogen challenge and may function to integrate various pathogen recognition signals.  相似文献   

18.
Transgenic tobacco plants with reduced activity of either uroporphyrinogen decarboxylase or coproporphyrinogen oxidase, two enzymes of the tetrapyrrole biosynthetic pathway, are characterized by the accumulation of photosensitizing tetrapyrrole intermediates, antioxidative responses, and necrotic leaf lesions. In this study we report on cellular responses in uroporphyrinogen decarboxylase and coproporphyrinogen oxidase antisense plants, normally associated with pathogen defense. These plants accumulate the highly fluorescent coumarin scopolin in their leaves. They also display increased pathogenesis-related protein expression and higher levels of free and conjugated salicylic acid. Upon tobacco mosaic virus inoculation, the plants with leaf lesions and high levels of PR-1 mRNA expression show reduced accumulation of virus RNA relative to wild-type controls. This result is indicative of an increased resistance to tobacco mosaic virus. We conclude that porphyrinogenesis as a result of deregulated tetrapyrrole synthesis induces a set of defense responses that resemble the hypersensitive reaction observed after pathogen attack.  相似文献   

19.
The Arabidopsis genes EDS1 and NDR1 were shown previously by mutational analysis to encode essential components of race-specific disease resistance. Here, we examined the relative requirements for EDS1 and NDR1 by a broad spectrum of Resistance (R) genes present in three Arabidopsis accessions (Columbia, Landsberg-erecta, and Wassilewskija). We show that there is a strong requirement for EDS1 by a subset of R loci (RPP2, RPP4, RPP5, RPP21, and RPS4), conferring resistance to the biotrophic oomycete Peronospora parasitica, and to Pseudomonas bacteria expressing the avirulence gene avrRps4. The requirement for NDR1 by these EDS1-dependent R loci is either weak or not measurable. Conversely, three NDR1-dependent R loci, RPS2, RPM1, and RPS5, operate independently of EDS1. Another RPP locus, RPP8, exhibits no strong exclusive requirement for EDS1 or NDR1 in isolate-specific resistance to P. parasitica, although resistance is compromised weakly by eds1. Similarly, resistance conditioned by two EDS1-dependent RPP genes, RPP4 and RPP5, is impaired partially by ndr1, implicating a degree of pathway cross-talk. Our results provide compelling evidence for the preferential utilization of either signaling component by particular R genes and thus define at least two disease resistance pathways. The data also suggest that strong dependence on EDS1 or NDR1 is governed by R protein structural type rather than pathogen class.  相似文献   

20.
Cell death is associated with the development of the plant disease resistance hypersensitive reaction (HR). Arabidopsis lsd mutants that spontaneously exhibit cell death reminiscent of the HR were identified previously. To study further the regulatory context in which cell death acts during disease resistance, one of these mutants, lsd5, was used to isolate new mutations that suppress its cell death phenotype. Using a simple lethal screen, nine lsd5 cell death suppressors, designated phx (for the mythological bird Phoenix that rises from its ashes), were isolated. These mutants were characterized with respect to their response to a bacterial pathogen and oomycete parasite. The strongest suppressors-phx2, 3, 6, and 11-1-showed complex, differential patterns of disease resistance modifications. These suppressors attenuated disease resistance to avirulent isolates of the biotrophic Peronospora parasitica pathogen, but only phx2 and phx3 altered disease resistance to avirulent strains of Pseudomonas syringae pv tomato. Therefore, some of these phx mutants define common regulators of cell death and disease resistance. In addition, phx2 and phx3 exhibited enhanced disease susceptibility to different virulent pathogens, confirming probable links between the disease resistance and susceptibility pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号