首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plant volatile organic compounds (VOCs) elicited in response to herbivory serve as cues for parasitic and predatory insects. Knowledge about quantitative relationships between the extent of herbivore-induced damage and the quantities of VOCs released is scarce. We studied the kinetics of VOC-emissions from foliage of the deciduous tree Alnus glutinosa induced by feeding activity of larvae of the geometrid moth Cabera pusaria. Quantitative relationships between the intensity of stress and strength of plant response were determined. Intensity of biotic stress was characterized by herbivore numbers (0–8 larvae) and by the amount of leaf area eaten. The strength of plant response was characterized by monitoring (i) changes in photosynthesis, (ii) leaf ultrastructure, and (iii) plant volatiles. Net assimilation rate displayed compensatory responses in herbivore-damaged leaves compared with control leaves. This compensatory response was associated with an overall increase in chloroplast size. Feeding-induced emissions of products of the lipoxygenase pathway (LOX products; (E)-2-hexenal, (Z)-3-hexenol, 1-hexanol, and (Z)-3-hexenyl acetate) peaked at day 1 after larval feeding started, followed by an increase of emissions of ubiquitous monoterpenes peaking on days 2 and 3. The emission of the monoterpene (E)-β-ocimene and of the nerolidol-derived homoterpene 4,8-dimethyl-nona-1,3,7-triene (DMNT) peaked on day 3. Furthermore, the emission kinetics of the sesquiterpene (E,E)-α-farnesene tended to be biphasic with peaks on days 2 and 4 after start of larval feeding. Emission rates of the induced LOX products, of (E)-β-ocimene and (E,E)-α-farnesene were positively correlated with the number of larvae feeding. In contrast, the emission of DMNT was independent of the number of feeders. These data show quantitative relationships between the strength of herbivory and the emissions of LOX products and most of the terpenoids elicited in response to feeding. Thus, herbivory-elicited LOX products and terpenoid emissions may convey both quantitative and qualitative signals to antagonists of the herbivores. In contrast, our data suggest that the feeding-induced homoterpene DMNT conveys the information “presence of herbivores” rather than information about the quantities of herbivores to predators and parasitoids.  相似文献   

3.
Elicitation of plant defense signaling that results in altered emission of volatile organic compounds (VOCs) offers opportunities for protecting plants against arthropod pests. In this study, we treated potato, Solanum tuberosum L., with the plant defense elicitor cis-jasmone (CJ), which induces the emission of defense VOCs and thus affects the behavior of herbivores. Using chemical analysis, electrophysiological and behavioral assays with the potato-feeding aphid Macrosiphum euphorbiae, we showed that CJ treatment substantially increased the emission of defense VOCs from potatoes compared to no treatment. Coupled GC-electroantennogram (GC-EAG) recordings from the antennae of M. euphorbiae showed robust responses to 14 compounds present in induced VOCs, suggesting their behavioral role in potato/aphid interactions. Plants treated with CJ and then challenged with M. euphorbiae were most repellent to alate M. euphorbiae. Principal component analysis (PCA) of VOC collections suggested that (E)-2-hexenal, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), (E)-β-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate (MeSA), CJ, and methyl benzoate (MeBA) were the main VOCs contributing to aphid behavioral responses, and that production of TMTT, (E)-β-farnesene, CJ, and DMNT correlated most strongly with aphid repellency. Our findings confirm that CJ can enhance potato defense against aphids by inducing production of VOCs involved in aphid-induced signalling.  相似文献   

4.
The emission of volatile organic compounds (VOCs) depends on temperature and light. Other factors such as insect herbivory also may modify VOC emission. In particular, aphid feeding promotes the release of new compounds and changes the composition of plant volatile blends. Given that some aphids are tended by ants, we investigated whether ants change the emission of VOCs indirectly through attendance on aphids. The effect of Lachnus roboris aphids and two different tending ant species on terpene emission rates of 4-year-old holm oak (Quercus ilex) saplings was investigated during a field experiment. There were five treatments: saplings alone (T1), saplings infested with L. roboris aphids (T2), saplings infested with aphids tended by the local ant Lasius grandis (T3), those tended by small colonies of the invasive ant Lasius neglectus (T4), and those tended by large colonies of the same invasive ant species (T5). The infestation by L. roboris elicited the emission of Δ3-carene and increased the emission of myrcene and γ-terpinene. Terpene emissions were modified depending on the tending ant species. Attendance by the local ant L. grandis increased α and β-pinene and sabinene. Attendance by the invasive ant L. neglectus only decreased significantly the emission of myrcene, one of the major compounds of the Q. ilex blend. Aphid abundance decreased with time for all treatments, but there was no difference in aphid abundance among treatments. Total terpene emission rates were not correlated with aphid abundance. These results highlight that aphids and tending ants may change terpene emission rates, depending on the ant species.  相似文献   

5.
The tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae) is a devastating pest of cultivated tomato Solanum lycopersicum throughout South and Central America and Europe. We aimed to characterize the behavioral mechanisms and the chemical cues involved in host selection of T. absoluta females by chemical analysis of tomato leaf volatiles, wind tunnel attraction assays, and oviposition bioassays. Tomato leaf odor elicited in mated females upwind orientation flight followed by landing as well as egg-laying, demonstrating the essential role of plant volatiles in T. absoluta host-finding behavior. In wind tunnel and oviposition choice experiments, T. absoluta females significantly preferred tomato S. lycopersicum over wild tomato Solanum habrochaites, which is resistant to larval feeding. This indicates that leaf volatiles provide information on the suitability of plants as larval hosts. Mated females also discriminated three cultivars of S. lycopersicum according to their volatile profiles. Headspace collections from leaves of these three cultivars contained large amounts of β-phellandrene, followed by limonene, 2-carene, and (E)-β-caryophyllene, which together accounted for more than 70% of tomato foliage headspace. Most leaf volatiles were released by all three cultivars, but they showed significant differences with respect to the presence of a few minor compounds and blend proportion. This is an initial study of the volatile signatures that mediate attraction and oviposition of tomato leafminer T. absoluta in response to its main host, tomato.  相似文献   

6.
The boll weevil, Anthonomus grandis, has been monitored through deployment of traps baited with aggregation pheromone components. However, field studies have shown that the number of insects caught in these traps is significantly reduced during cotton squaring, suggesting that volatiles produced by plants at this phenological stage may be involved in attraction. Here, we evaluated the chemical profile of volatile organic compounds (VOCs) emitted by undamaged or damaged cotton plants at different phenological stages, under different infestation conditions, and determined the attractiveness of these VOCs to adults of A. grandis. In addition, we investigated whether or not VOCs released by cotton plants enhanced the attractiveness of the aggregation pheromone emitted by male boll weevils. Behavioral responses of A. grandis to VOCs from conspecific-damaged, heterospecific-damaged (Spodoptera frugiperda and Euschistus heros) and undamaged cotton plants, at different phenological stages, were assessed in Y-tube olfactometers. The results showed that volatiles emitted from reproductive cotton plants damaged by conspecifics were attractive to adults boll weevils, whereas volatiles induced by heterospecific herbivores were not as attractive. Additionally, addition of boll weevil-induced volatiles from reproductive cotton plants to aggregation pheromone gave increased attraction, relative to the pheromone alone. The VOC profiles of undamaged and mechanically damaged cotton plants, in both phenological stages, were not different. Chemical analysis showed that cotton plants produced qualitatively similar volatile profiles regardless of damage type, but the quantities produced differed according to the plant’s phenological stage and the herbivore species. Notably, vegetative cotton plants released higher amounts of VOCs compared to reproductive plants. At both stages, the highest rate of VOC release was observed in A. grandis-damaged plants. Results show that A. grandis uses conspecific herbivore-induced volatiles in host location, and that homoterpene compounds, such as (E)-4,8-dimethylnona-1,3,7–triene and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene and the monoterpene (E)-ocimene, may be involved in preference for host plants at the reproductive stage.  相似文献   

7.
Larval stages of the horse chestnut leafminer Cameraria ohridella can completely destroy the surface of horse chestnut leaves, Aesculus hippocastanum. This study investigated the effect of the degree of leaf browning caused by the insect’s larvae on olfactory detection, aggregation, and oviposition of C. ohridella adults. The influence of A. hippocastanum flower scent on oviposition of the first generation was also evaluated. Utilizing gas chromatography coupled with parallel detection by mass spectrometry and electroantennography (GC-MS/EAD), more than 30 compounds eliciting responses from antennae of C. ohridella were detected. Oviposition and mining by C. ohridella caused significant changes in the profile of leaf volatiles of A. hippocastanum. After oviposition and subsequent mining by early larval stages (L1–L3), substances such as benzaldehyde, 1,8-cineole, benzyl alcohol, 2-phenylethanol, methyl salicylate, (E)-β-caryophyllene, and (E,E)-α-farnesene were emitted in addition to the compounds emitted by uninfested leaves. Insects were able to detect these compounds. The emitted amount of these substances increased with progressive larval development. During late larval stages (L4, L5) and severe loss of green leaf area, (E,E)-2,4-hexadienal, (E/Z)-linalool oxide (furanoid), nonanal, and decanal were also released by leaves. These alterations of the profile of volatiles caused modifications in aggregation of C. ohridella on leaves. In choice tests, leaves in early infestation stages showed no significant effect on aggregation, whereas insects avoided leaves in late infestation stages. Further choice tests with leaves treated with single compounds led to the identification of substances mediating an increase or decrease in oviposition.  相似文献   

8.
The chemical ecology of the leafhopper, Cicadulina storeyi China (Homoptera: Cicadellidae), an important vector of Maize Streak Virus (MSV), was studied with a view to developing novel leafhopper control strategies in sub-Saharan Africa. Choice tests using a Y-tube olfactometer revealed that odors from uninfested maize seedlings (Zea mays cv. Delprim) were significantly more attractive to C. storeyi than odors from C. storeyi-infested seedlings. Headspace samples of volatile organic compounds (VOCs) collected from 10 to 12 day-old uninfested seedlings were more attractive than those collected from infested seedlings. While VOCs collected from uninfested maize seedlings were attractive, VOCs collected from C. storeyi-infested seedlings were significantly repellent. Analysis of the collected VOCs by gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS) led to the identification of myrcene, linalool, (E)-2-decen-1-ol, and decanal from uninfested seedlings, and (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, benzyl acetate, indole, geranyl acetate, (E)-caryophyllene, α-bergamotene, (E)-β-farnesene, β-sesquiphellandrene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) from infested seedlings. Of these, methyl salicylate, (E)-caryophyllene, (E)-β-farnesene, and TMTT were identified previously as volatile semiochemicals involved in plant defense against other sucking insect pests. When tested individually for behavioral activity, all compounds were repellent for C. storeyi. Moreover, when these induced VOCs were added to the blend of VOCs from uninfested maize seedlings, a shift from attraction to repellency was observed. Addition of methyl salicylate, (E)-β-farnesene, or TMTT resulted in a choice for the solvent control (i.e., repulsion), whereas addition of (E)-caryophyllene resulted in no reduction in host VOC attractiveness. These results show that VOCs induced in maize have the potential to be exploited in the control of viruliferous leafhoppers in sub-Saharan Africa.  相似文献   

9.
Macaranga myrmecophytes harbor species-specific Crematogaster ants that defend host trees from herbivores. We examined ant aggressive behaviors when artificially damaged leaf pieces from another tree were offered to four sympatric species of obligate Macaranga myrmecophytes. The ants showed aggressive behavior in response to leaf pieces regardless of the leaf species; however, aggressiveness was higher when conspecific leaf pieces were offered than when nonhost species were offered. Thus, ants can recognize leaf damage and distinguish among damaged leaf species. Chemical analyses of volatile compounds emitted from damaged leaves that may induce ant defense showed that the composition of the minor compounds differed among the four Macaranga species, although there were many compounds in common.  相似文献   

10.
Analyses of volatiles emitted from artificially damaged leaves attached to branches of seven Magnolia taxa revealed the presence of (Z)-3-hexenyl acetate, (Z)-3-hexenol (the green odor compounds), and several mono- and sesquiterpenes, e.g., (Z)- and (E)-β-ocimene and caryophyllene. An herbivore-induced leaf volatile, (E)-4,8-dimethyl-1,3,7-nonatriene, known as a predator attractant in agricultural plants, was emitted 4–6 hr after leaves were damaged in M. hypoleuca. The damaged leaves of M. grandiflora, however, immediately released (E)-4,8-dimethyl-1,3,7-nonatriene. Undamaged leaves of Magnolia species examined did not emit volatile compounds. In addition, detached flowers of six Magnolia taxa and Liriodendron tulipifera also emit (E)-4,8-dimemyl-1,3,7-nonatriene as a floral volatile (up to 30% in some species); the chemical was also emitted from the intact flowers of M. heptapeta and M. salicifolia.  相似文献   

11.
The plant semiochemical cis-jasmone primes/induces plant resistance that deters herbivores and attracts natural enemies. We studied the induction of volatile organic compounds (VOCs) in winter wheat and spring barley after exposure of plants to three synthetic cis-jasmone doses (50 μl of 1, 100, and 1?×?104 ng μl?1) and durations of exposure (1, 3, and 6 h). Cereal leaf beetle, Oulema melanopus, adult behavioral responses were examined in a Y-tube olfactometer to cis-jasmone induced plant VOC bouquets and to two synthetic blends of VOCs (3 green leaf volatiles (GLVs); 4 terpenes?+?indole). In both cereals, eight VOCs [(Z)-3-hexanal, (Z)-3-hexanol, (Z)-3-hexanyl acetate, (Z)-β-ocimene, linalool, β-caryophyllene, (E)-ß–farnesene, and indole] were induced 100- to 1000-fold after cis-jasmone exposure. The degree of induction in both cereals was usually positively and linearly associated with increasing exposure dose and duration. However, VOC emission rate was only ~2-fold greater from plants exposed to the highest vs. lowest cis-jasmone exposure doses (1?×?104 difference) or durations (6-fold difference). Male and female O. melanopus were deterred by both cereal VOC bouquets after plant exposure to the high cis-jasmone dose (1?×?104 ng μl?1), while females were also deterred after plant exposure to the low dose (1 ng μl?1) but attracted to unexposed plant VOC bouquets. Both O. melanopus sexes were repelled by terpene/indole and GLV blends at two concentrations (25 ng?·?min?1; 125 ng?·?min?1), but attracted to the lowest dose (1 ng?·?min?1) of a GLV blend. It is possible that the biologically relevant low cis-jasmone dose has ecological activity and potential for inducing field crop VOCs to deter O. melanopus.  相似文献   

12.
Induced volatile terpenes have been commonly reported among diverse agricultural plant species, but less commonly investigated in odorous plant species. Odorous plants synthesize and constitutively store relatively large amounts of volatiles, and these may play a role in defense against herbivores. We examined the effect of herbivory and methyl jasmonate (MeJA) exposure on the release of volatile organic compounds (VOCs) in the marsh elder, Iva frutescens, which contains numerous constitutive VOCs, mainly mono- and sesquiterpenes. Our specific goal was to test for the presence of inducible VOCs in a naturally occurring plant already armed with VOCs. The abundant, native specialist leaf beetle Paria aterrima was used in herbivore induction trials. VOCs were sampled from herbivore wounded and unwounded, and from MeJA treated and untreated I. frutescens. Total VOC emissions were significantly greater in response to herbivory and MeJA treatment compared to unwounded controls. Herbivore wounding caused a substantial shift in the emission profile (42 VOCs from wounded, compared to 8 VOCs from unwounded I. frutescens), and MeJA had a similar yet less substantial influence on the emission pattern (28 VOCs from MeJA treated compared to 8 VOCs from untreated I. frutescens). Constitutive VOC emissions predominated, but some VOCs were detected only in response to herbivory and MeJA treatment, suggesting de novo synthesis. Several VOCs exhibited a delayed emission profile in contrast to the rapid release of constitutive VOCs, and principal components analysis revealed they were not associated with constitutive emissions. While I. frutescens contains many constitutive VOCs that are released immediately in response to herbivory, it also produces novel VOCs in response to feeding by the specialist P. aterrima and MeJA treatment.  相似文献   

13.
We tested the hypothesis that ontogenetic variation in leaf chemistry could affect the efficacy of genetically expressed Bacillus thuringiensis cry1A(a) d-endotoxin, and thus provide spatial variation in (1) foliage protection and (2) selective pressures that could delay the resistance of folivores. Our model consisted of clonal hybrid Populus plants (NC5339). Consumption of foliage and relative growth rates of gypsy moth, Lymantria dispar (L.) increased, and phenolic glycoside concentrations decreased, as leaves from transformed plants containing the cry1A(a) d-endotoxin and nontransformed plants matured from leaf plastochron index (LPI) 1–6. Feeding and growth rates were negatively correlated with phenolic glycosides in both transformed and nontransformed foliage. The presence of the B. thuringiensis d-endotoxin was at most, additive to the effect of the phenolic glycosides. Feeding and growth rates were positively correlated with condensed tannins in transformed foliage, but there was no relationship with condensed tannins in nontransformed foliage. The results indicate that the presence of foliar allelochemicals of poplar can enhance the effectiveness of genetically expressed B. thuringiensis d-endotoxin against gypsy moth larvae. However, the spatial variation in gypsy moth performance in response to the combination of foliar allelochemicals and d-endotoxin was not greater than the effect of ontogenetic variation in foliar allelochemicals alone. These results suggest that for this important pest, foliage protection may be obtained without genetically engineered defenses, and instead, by relying on ontogenetic and clonal variation in allelochemicals. The benefits of combining novel resistance mechanisms with natural ones will depend upon the specific folivore's adaptation to natural resistance mechanisms, such as allelochemicals. Moreover, some of the greatest benefits from transgenic resistance may arise from the need to protect trees from multiple pests, some of which may not be deterred by, or may even prefer, allelochemicals that confer protection from a few species.  相似文献   

14.
Systemic acquired resistance (SAR) is a plant self-defense mechanism against a broad-range of pathogens and insect pests. Among chemical SAR triggers, plant and bacterial volatiles are promising candidates for use in pest management, as these volatiles are highly effective, inexpensive, and can be employed at relatively low concentrations compared with agrochemicals. However, such volatiles have some drawbacks, including the high evaporation rate of these compounds after application in the open field, their negative effects on plant growth, and their inconsistent levels of effectiveness. Here, we demonstrate the effectiveness of volatile organic compound (VOC)-mediated induced resistance against both the bacterial angular leaf spot pathogen, Pseudononas syringae pv. lachrymans, and the sucking insect aphid, Myzus persicae, in the open field. Using the VOCs 3-pentanol and 2-butanone where fruit yields increased gave unexpectedly, a significant increase in the number of ladybird beetles, Coccinella septempunctata, a natural enemy of aphids. The defense-related gene CsLOX was induced by VOC treatment, indicating that triggering the oxylipin pathway in response to the emission of green leaf volatiles can recruit the natural enemy of aphids. These results demonstrate that VOCs may help prevent plant disease and insect damage by eliciting induced resistance, even in open fields.  相似文献   

15.
Volatile organic compounds (VOCs) emitted from plants in response to insect infestation can function as signals for the attraction of predatory/parasitic insects and/or repulsion of herbivores. VOCs also may play a role in intra- and inter-plant communication. In this work, the kinetics and composition of VOC emissions produced by tomato (Solanum lycopersicum) plants infested with the greenhouse whitefly Trialeurodes vaporariorum was determined within a 14?days period. The VOC emission profiles varied concomitantly with the duration of whitefly infestation. A total of 36 different VOCs were detected during the experiment, 26 of which could be identified: 23 terpenoids, plus decanal, decane, and methyl salicylate (MeSA). Many VOCs were emitted exclusively by infested plants, including MeSA and 10 terpenoids. In general, individual VOC emissions increased as the infestation progressed, particularly at 7?days post-infestation (dpi). Additional tunnel experiments showed that a 3?days exposure to VOC emissions from whitefly-infested plants significantly reduced infection by a biotrophic bacterial pathogen. Infection of VOC-exposed plants induced the expression of a likely tomato homolog of a methyl salicylate esterase gene, which preceded the expression of pathogenesis-related protein genes. This expression pattern correlated with reduced susceptibility in VOC-exposed plants. The observed cross-kingdom effect of plant-plant signaling via VOCs probably represents a generalized defensive response that contributes to increased plant fitness, considering that resistance responses to whiteflies and biotrophic bacterial pathogens in tomato share many common elements.  相似文献   

16.
Plants defend themselves against herbivory through several means, including the production of airborne volatile organic compounds (VOCs). These VOCs benefit plants by attracting natural enemies of their herbivores. The pea aphid, Acyrthosiphon pisum, is able to feed on its host plant, Vicia faba, without inducing detectable changes in plant VOC emission. Levels of VOCs emission are not significantly different between control plants and those fed upon by aphids for up to 5 days. Using a second herbivore, the beet armyworm caterpillar, Spodoptera exigua, we demonstrate that several expected caterpillar-induced VOCs are reduced when co-infested with pea aphids, thus demonstrating that pea aphids have the ability to inhibit the release of certain VOCs. This study shows, for the first time, that aphids not only avoid triggering plant volatile emission, but also can actively inhibit herbivore-induced volatiles.  相似文献   

17.
The leaf volatiles emitted from four nonhost tree species of Ips typographus, i.e. Betula pendula, B. pubescens, Populus tremula, and Sambucus nigra, were collected outdoors by headspace sampling in situ and analyzed by GC-MS. Three major classes of compounds, aliphatics [mainly green-leaf volatiles (GLVs)], monoterpenes, and sesquiterpenes, existed in all the deciduous tree species investigated. In June, when the bark beetles are searching in flight for host trees, GLVs mainly consisting of (Z)-3-hexenyl acetate and (Z)-3-hexen-1-ol were the dominant constituents in B. pendula and S. nigra. In B. pubescens and P. tremula, sesquiterpenes (and their derivatives) and monoterpenes made up the major part of whole volatile blends, respectively. Surprisingly, sesquiterpene alcohols and other oxides released from B. pubescens in considerable amounts were not found in the closely related species, B. pendula. By August, both the total volatiles and individual compounds significantly decreased, mainly due to the maturation of leaves, since the light intensity and temperatures during sampling were the same as in June. There were almost no volatiles detected from P. tremula and S. nigra leaves in August. The total emissions from these deciduous species were significantly different among the species, with B. pubescens releasing 5–10 times more than other species. Under the conditions of constant light intensity and humidity, emissions of both total volatiles and most individual components of severed B. pendula and S. nigra branches (with fresh leaves) increased according to a saturation curve from 16°C to 40°C. Ips typographus antennae responded strongly to green leaf alcohols: (Z)-3-hexen-1-ol, 1-hexanol, and (E)-2-hexen-1-ol, but not to aldehydes or acetates in GC-EAD analyses of B. pendula and B. pubescens leaf volatiles. No antennal responses to monoterpenes, sesquiterpenes, or sesquiterpene oxides were found. These three antennally active GLVs emitted from nonhost tree leaves might be indicators of a wrong habitat in the host selection of conifer bark beetles.  相似文献   

18.
The subepidermal pigment glands of cotton accumulate a variety of terpenoid products, including monoterpenes, sesquiterpenes, and terpenoid aldehydes that can act as feeding deterrents against a number of insect herbivore species. We compared the effect of herbivory by Spodoptera littoralis caterpillars, mechanical damage by a fabric pattern wheel, and the application of jasmonic acid on levels of the major representatives of the three structural classes of terpenoids in the leaf foliage of 4-week-old Gossypium hirsutum plants. Terpenoid levels increased successively from control to mechanical damage, herbivory, and jasmonic acid treatments, with E-β-ocimene and heliocide H1 and H4 showing the highest increases, up to 15-fold. Herbivory or mechanical damage to older leaves led to terpenoid increases in younger leaves. Leaf-by-leaf analysis of terpenes and gland density revealed that higher levels of terpenoids were achieved by two mechanisms: (1) increased filling of existing glands with terpenoids and (2) the production of additional glands, which were found to be dependent on damage intensity. As the relative response of individual terpenoids did not differ substantially among herbivore, mechanical damage, and jasmonic acid treatments, the induction of terpenoids in cotton foliage appears to represent a non-specific wound response mediated by jasmonic acid. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography–mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (d)-limonene and (E,E)-α-farnesene, differed between the two plant growth stages. Gas chromatographic–electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.  相似文献   

20.
Tropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death. It also activates many plant defense responses, including the emission of phytogenic VOCs. Plant emitted VOCs play a role in many eco-physiological functions. Besides protecting the plant from abiotic stresses (high temperatures and oxidative stress) and biotic stressors (competing plants, micro- and macroorganisms), they drive multitrophic interactions between plants, herbivores and their natural enemies e.g., predators and parasitoids as well as interactions between plants (plant-to-plant communication). In addition, VOCs have an important role in atmospheric chemistry. They are O3 precursors, but at the same time are readily oxidized by O3, thus resulting in a series of new compounds that include secondary organic aerosols (SOAs). Here, we review the effects of O3 on plants and their VOC emissions. We also review the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling, and propose further research directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号