首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Reticulated vitreous carbon (RVC, 39 pores per cm), uncompressed graphite felt (UGF) and Ti mesh were investigated as 3-D anode catalyst supports for direct liquid methanol fuel cells with the aim of improving the catalyst mass specific activity. Mesoporous Pt–Ru layers composed of nano-particle agglomerates were electrodeposited on the 3-D substrates using a micellar deposition media composed of Triton X-100, isopropanol, and an aqueous phase containing H2PtCl6 and (NH4)2RuCl6. The effect of deposition current density, support type, and counter electrode design on the catalyst layer morphology, mass loading and elemental composition is discussed. In direct methanol fuel cell experiments using 1 M CH3OH—0.5 M H2SO4 the 3-D anodes with PtRu load between 2.8 g m−2 (on Ti mesh) and 12.0 g m−2 (on RVC) and Pt:Ru atomic ratio of about 4:1 provided peak power outputs based on catalyst mass of 50.4 W g−1 and 40.5 W g−1, respectively, at 333 K. The mass specific activity of the catalyst supported on the 3-D matrix is determined by the synergy between catalyst deposition procedure and support physico-chemical properties.  相似文献   

2.
A modified impregnation method was used to prepare highly dispersive carbon-supported PtRu catalyst (PtRu/C). Two modifications to the conventional impregnation method were performed: one was to precipitate the precursors ((NH4)2PtCl6 and Ru(OH)3) on the carbon support before metal reduction; the other was to add a buffer into the synthetic solution to stabilize the pH. The prepared catalyst showed a much higher activity for methanol electro-oxidation than a catalyst prepared by the conventional impregnation method, even higher than that of current commercially available, state-of-the-art catalysts. The morphology of the prepared catalyst was characterized using TEM and XRD measurements to determine particle sizes, alloying degree, and lattice parameters. Electrochemical methods were also used to ascertain the electrochemical active surface area and the specific activity of the catalyst. Based on XPS measurements, the high activity of this catalyst was found to originate from both metallic Ru (Ru0) and hydrous ruthenium oxides (RuOxHy) species on the catalyst surface. However, RuOxHy was found to be more active than metallic Ru. In addition, the anhydrous ruthenium oxide (RuO2) species on the catalyst surface was found to be less active.  相似文献   

3.
Pure Pt, PtRu and Pt5Ru4M (M = Ni, Sn and Mo) electrocatalysts were prepared using a NaBH4 reduction method. The alloy formation and particle size of the electrocatalysts were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The formation of crystalline Pt was confirmed regardless of the addition of Ru and transition metals. The average particle size was found to be about 2.5–3.5 nm.The electrochemical properties of the electrocatalysts were analyzed by methanol electro-oxidation and CO stripping in the half cell. The mass activity and specific activity were obtained through these experiments. Methanol electro-oxidation and the specific activity of the PtRuNi electrocatalyst were much higher than that of PtRu electrocatalyst. The specific activity of methanol electro-oxidation based on EAS for the PtRuSn and PtRuMo electrocatalysts was higher than that of the PtRu, although their mass activity of methanol electro-oxidation was lower.  相似文献   

4.
Ternary Pt45Ru45Mn10/C, Pt45Ru45Mo10/C and Pt45Ru45W10/C catalysts were synthesized and physical and electrochemical properties were characterized. Particle sizes of the catalysts were determined by X-ray diffraction to be 3.9, 4.8 and 4.6 nm for the Mn, Mo and W incorporated catalysts, respectively. Electrochemically active surface areas were calculated from CO stripping results, which were 17.7, 17.2 and 15.7 m2/g catal for the Pt45Ru45Mn10/C, Pt45Ru45Mo10/C and Pt45Ru45W10/C catalysts, respectively. In methanol electro-oxidation, the Pt45Ru45W10/C catalyst showed highest mass and specific activities of 2.78 A/g cat. and 177 mA/m2, respectively, which were 22 and 100% higher than those of commercial PtRu/C. In the case of ethanol electro-oxidation, the Pt45Ru45Mo10/C catalyst exhibited highest mass and specific activities of 4.8 A/g catal and 280 mA/m2, respectively. Specific activity of the Pt45Ru45Mo10/C catalyst was 56% higher than that of the commercial PtRu/C.  相似文献   

5.
Ling Chen 《Electrochimica acta》2006,52(3):1191-1198
A simple impregnation-reduction method introducing Nd2O3 as dispersing reagent has been used to synthesize PtRu/C catalysts with uniform Pt-Ru spherical nanoparticles. X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analysis have been used to characterize the composition, particle size and crystallinity of the catalysts. Well-dispersed catalysts with average particle size about 2 nm are achieved. The electrochemically active surface area of the different PtRu/C catalysts is determined by the COad-stripping voltammetry experiment. The electrocatalytic activities of these catalysts towards methanol electrooxidation are investigated by cyclic voltammetry measurements and ac impedance spectroscopy. The in-house prepared PtRu/C catalyst (PtRu/C-03) in 0.5 M H2SO4 + 1.0 M CH3OH at 30 °C display a higher catalytic activity and lower charge-transfer resistance (Rt) than that of the standard PtRu/C catalyst (PtRu/C-C). It is mainly due to enhanced electrochemically active specific surface, higher alloying extent of Ru and the abundant Pt0 and Ru oxides on the surface of the PtRu/C catalyst.  相似文献   

6.
Spherical carbons were prepared using sucrose as a carbon precursor via hydrothermal method for use as supports for PtRu-alloy catalysts in the methanol electro-oxidation. Spherical carbon particles with an average diameter of 1μm (SC-1) were prepared under static condition (without stirring), while spherical carbon materials with a diameter of 500–600 nm (SC-2) were obtained under dynamic condition (with stirring). A graphitic spherical carbon material (SC-g) was successfully prepared by the addition of Fe salt under dynamic condition. It was revealed that the catalytic action of Fe species during the hydrothermal process was essential for the formation of a graphitic structure of SC-g. The surface areas were found to be 112, 383, and 252 m2/g for SC-1, SC-2, and SC-g, respectively. PtRu nanoparticles were then supported on the spherical carbons by a NaBH4-reduction method for use in the methanol electro-oxidation. The average metal particle sizes were 3.5, 2.6, and 2.7 nm for PtRu/SC-1, PtRu/SC-2, and PtRu/SC-g, respectively. The PtRu/SC-1 and PtRu/SC-2 showed a lower catalytic performance in the methanol electro-oxidation than the PtRu/Vulcan. However, the PtRu/SC-g exhibited a higher catalytic performance than the PtRu/Vulcan. It is believed that the high graphitic nature of SC-g was responsible for the enhanced catalytic performance of PtRu/SC-g.  相似文献   

7.
Size-controlled PtRu nanoparticles embedded in TiO2 were prepared by simultaneous multi-gun sputtering from pure targets of Pt, Ru, and TiO2. The mean diameter of the PtRu nanoparticles, as confirmed by their high-resolution transmission electron microscopic images, can be varied from ∼1.8 to ∼3.7 nm by changing the RF power ratio of PtRu and TiO2. The transmission electron diffraction and grazing incidence wide angle X-ray scattering patterns of the PtRu nanoparticles embedded in TiO2 confirmed that the PtRu exists as a mixed alloy structure consisting of both fcc and hcp phases, whereas the TiO2 matrix is present as an amorphous phase. The size-controlled PtRu/TiO2 electrodes were found to exhibit unique electronic properties depending on their size, which affected the potential of zero total charge and methanol oxidation reaction. The mass activity of PtRu/TiO2 for methanol oxidation was determined by the interplay of the surface electronic factors at the metal-solution-interface and the value of the oxophilicity of the nanoparticles was increased by decreasing the particle size.  相似文献   

8.
The effect of heat treatment on a commercial PtRu/C catalyst was investigated with a focus on the relationship between electrochemical and surface properties. The heat treated PtRu/C catalysts were prepared by reducing the commercial PtRu/C catalyst at 300, 500, and 600 °C under hydrogen flow. The maximum mass activity for the methanol electro-oxidation reaction (MOR) was observed in the catalyst heat treated at 500 °C, while specific activity for the MOR increased with increasing heat treatment temperature. Cyclic voltammetry (CV) results revealed that the heat treatment caused Pt rich surface formation. The increase in surface Pt was confirmed by X-ray photoelectron spectroscopy; the surface (Pt:Ru) ratio of the fresh catalyst (81:19) changed to (87:13) in the 600 °C heat treated catalyst. Quantitative analysis of the Ru oxidation state showed that the ratio of metallic Ru increased with an increase in heat treatment temperature. On the other hand, RuOxHy completely reduced at 500 °C and the ratio of RuO2 slightly decreased with increasing heat treatment temperature.  相似文献   

9.
Phosphomolybdic acid (H3PMo12O40, PMo12) was employed to modify PtRu nanocatalysts for methanol electro-oxidation. The results show that the performance of PtRu catalysts was improved by the formation of the negatively charged self-assembled PMo12 monolayer on the catalyst surface. Electrochemical measurements indicate that the PMo12-modified PtRu catalyst has a higher catalytic activity and a better poison tolerance than the unmodified one. It is also found that the sequence in which PtRu and PMo12 were deposited onto the carbon support during the preparation process has a major influence on the performance of PMo12-modified PtRu nanocatalysts. X-ray photoelectron spectra results show that the self-assembled PMo12 layer inhibits the formation of metal oxides/hydroxides on the surface of PtRu nanoparticles to some extent.  相似文献   

10.
A H2 plasma has been used to treat the PtRu nanoparticles supported on the plasma functionalized multi-walled carbon nanotubes (PtRu/PS-MWCNTs). The plasma treatment does not change the size and crystalline structure of PtRu nanoparticles, but reduces the fraction of the oxidized species at the outermost perimeter of particles. The electrochemical results show that these plasma treated PtRu/PS-MWCNTs exhibit increased electrochemically active surface area, improved electrocatalytic activity and long term stability toward methanol and formic acid oxidation, and enhanced tolerance to carbonaceous species relative to the sample untreated with the H2 plasma. The electrocatalytic activities of the plasma treated PtRu/PS-MWCNTs are found to be dependent upon the Pt:Ru atomic ratios of PtRu nanoparticles. The catalysts with a Pt:Ru atomic ratio close to 1:1 show superior properties in the electrooxidation of methanol and formic acid at room temperature and better tolerance to carbonaceous species.  相似文献   

11.
In this work, high-surface supported PtRu/C were prepared with Ru(NO)(NO3)3 and [Pt(H2NCH2CH2NH2)2]Cl2 as the precursors and hydrogen as a reducing agent. XRD and TEM analyses showed that the PtRu/C catalysts with different loadings possessed small and homogeneous metal particles. Even at high metal loading (40 wt.% Pt, 20 wt.% Ru) the mean metal particle size is less than 4 nm. Meanwhile, the calculated Pt crystalline lattice parameter and Pt (2 2 0) peak position indicated that the geometric structure of Pt was modified by Ru atoms. Among the prepared catalysts, the lattice parameter of 40-20 wt.% PtRu/C contract most. Cyclic voltammetry (CV), chronoamperometry (CA), CO stripping and single direct methanol fuel cell tests jointly suggested that the 40-20 wt.% PtRu/C catalyst has the highest electrochemical activity for methanol oxidation.  相似文献   

12.
Min Ku Jeon 《Electrochimica acta》2009,54(10):2837-2842
The effect of reduction conditions on a Pt28Ni36Cr36/C catalyst was investigated by using two different reduction methods: hydrogen reduction and NaBH4 reduction. In hydrogen reduced catalysts, dissolution of metallic Ni and Cr was observed during cyclic voltammetry (CV) tests, and a larger amount of Ni and Cr was dissolved when reduced at higher temperatures. For methanol electro-oxidation, the highest specific current density of 1.70 A m−2 at 600 s of the chronoamperometry tests was observed in the catalyst reduced at 300 °C, which was ∼24 times that of a Pt/C catalyst (0.0685 A m−2). In NaBH4 reduced catalysts, formation of an amorphous phase and a more Pt-rich surface was observed in X-ray diffraction and CV results, respectively, with increasing amounts of NaBH4. When reduced by 50 times of the stoichiometric amount of NaBH4, the PtNiCr/C catalyst (PtNiCr-50t) showed a current density of 34.1 A gnoble metal−1, which was 81% higher than the 18.8 A gnoble metal−1 value of a PtRu/C catalyst at 600 s of the chronoamperometry tests. After 13 h of chronoamperometry testing, the activity of the PtNiCr-50t (15.0 A gnoble metal−1) was 110% higher than the PtRu/C catalyst (7.15 A gnoble metal−1). The PtNiCr/C catalyst shows promise as a Ru-free methanol oxidation catalyst.  相似文献   

13.
To determine the influence of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation, this work investigated methanol electrooxidation on as received and different electrochemically polarized PtRu/C catalysts. Thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were used to characterize the redox state of PtRu/C after different electrochemical polarization. The methanol electrooxidation activity was measured by cyclic voltammetry (CV), Tafel steady state plot and electrochemical impedance spectroscopy (EIS). The results indicate that the metallic state Pt0Ru0 can be formed during cathodic polarization and contribute to electrooxidation of methanol, while the formation of inactive ruthenium oxides during anodic polarization cause the negative effect on methanol electrooxidation. Different Tafel slopes and impedance behaviors in different potential regions also reveal a change of the mechanism and rate-determining step in methanol electrooxidation with increasing potentials. The kinetic analysis from Tafel plots and EIS reveal that at low potentials indicate the splitting of the first CH bond of CH3OH molecule with the first electron transfer is rate-determining step. However, at higher potentials, the oxidation reaction of adsorbed intermediate COads becomes rate-determining step.  相似文献   

14.
Sulfonated polyimide (SPI) membranes have been evaluated as electrolyte membranes in direct methanol fuel cells (DMFCs). The membrane-electrode assembly (MEA) was made by hot-pressing the membrane, an anode and a cathode, catalyzed with PtRu/CB (PtRu dispersed on carbon black) and Pt/CB bound with Nafion® ionomer, respectively. The performance of the cell based on SPI was compared with that of Nafion® 112 in various operation conditions such as cell temperature (Tcell), cathode relative humidity (RH), and methanol concentration (CMeOH). The methanol crossover at the cell based on SPI was a half of Nafion® 112, resulting in the improved cell efficiency. Advantage of the use of SPI became much distinctive from the conventional Nafion® 112 when the DMFC was operated at a higher Tcell or a higher CMeOH.  相似文献   

15.
In order to develop a cheaper and durable catalyst for methanol electrooxidation reaction, ceria (CeO2) as a co-catalytic material with Pt on carbon was investigated with an aim of replacing Ru in PtRu/C which is considered as prominent anode catalyst till date. A series of Pt-CeO2/C catalysts with various compositions of ceria, viz. 40 wt% Pt-3–12 wt% CeO2/C and PtRu/C were synthesized by wet impregnation method. Electrocatalytic activities of these catalysts for methanol oxidation were examined by cyclic voltammetry and chronoamperometry techniques and it is found that 40 wt% Pt-9 wt% CeO2/C catalyst exhibited a better activity and stability than did the unmodified Pt/C catalyst. Hence, we explore the possibility of employing Pt-CeO2 as an electrocatalyst for methanol oxidation. The physicochemical characterizations of the catalysts were carried out by using Brunauer Emmett Teller (BET) surface area and pore size distribution (PSD) measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. A tentative mechanism is proposed for a possible role of ceria as a co-catalyst in Pt/C system for methanol electrooxidation.  相似文献   

16.
《Journal of Catalysis》2005,229(1):176-184
Carbon-supported Pt, Ru, and binary PtRu catalysts were prepared by an impregnation-reductive pyrolysis method at various temperatures, with Pt(NH3)2(NO2)2 and Ru(NO3)3 as precursors. The effect of the reductive pyrolysis temperature on the structure of the metal particles and its relationship to the electrocatalytic activity toward methanol and preadsorbed carbon monoxide (COad) oxidation was examined. The decomposition temperature of the Pt50Ru50 mixed precursor shifted to a temperature lower than that of the Ru single-source precursor. High-resolution scanning electron microscopy, X-ray diffraction, and COad stripping voltammetry of Pt/C and Ru/C indicated that Ru nanoparticles tend to grow drastically when the pyrolysis temperature is increased, whereas Pt nanoparticles are more resistant to particle growth. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis showed that there is a slight compositional variation between individual nanoparticles, depending on the particle size. The Pt50Ru50/C catalyst prepared at 200 °C exhibited the maximum electrocatalytic activity toward methanol oxidation per mass of PtRu, which is discussed based on the appropriate balance of precursor decomposition and particle growth.  相似文献   

17.
The structure, surface composition and activity/selectivity for ethanol oxidation of carbon supported Pt alloy catalysts with different composition and catalyst loading, which were synthesized via the polyol-route, were investigated and characterized by microscopic/spectroscopic methods (TEM, EDX, XRD) and electrochemical (RDE, on-line DEMS) measurements under well-defined transport and diffusion conditions. The performance of the polyol-type Pt/C (20 wt.%), PtRu/C (20, 40 and 60 wt.%), and Pt3Sn/C (20 wt.%) catalysts was compared with that of commercial Pt/C, PtRu/C and Pt3Sn/C (E-Tek) catalysts. The metal particle sizes of the polyol-type catalysts are significantly smaller than those of the corresponding commercial catalysts, nevertheless both the mass specific activities and, more pronounced, the inherent, active surface area specific activities are lower than those of the commercial catalysts, which is related to the lower degree of alloy formation in the polyol-type catalysts. For all catalysts, incomplete ethanol oxidation to C2 products (acetaldehyde and acetic acid) prevails under conditions of this study, CO2 formation contributes by ≤1% for potentiostatic reaction conditions. The lower activity of the polyol-type catalysts is mainly due to the lower activity for acetaldehyde formation. Implications and further strategies for fuel cell applications are discussed.  相似文献   

18.
Graphitic carbon nitride (g-C3N4) has been demonstrated as an advanced support material for Pt nanoparticles (NPs) due to its excellent stability and abundant Lewis acid for anchoring metal NPs. However, its non-conductive nature and low surface areas still impede its application in electrochemical fields. Herein, a π–π stacking method is presented to prepare graphene/ultrathin g-C3N4 nanosheets composite support for PtRu catalyst. The weaknesses of g-C3N4 are greatly overcome by establishing a 2D layered structure. The significantly enhanced performance for this novel PtRu catalyst is ascribed to reasons as follows: the homogeneous dispersion of PtRu NPs on g-C3N4 nanosheets due to its abundant Lewis acid sites for anchoring PtRu NPs; the excellent mechanical resistance and stability of g-C3N4 nanosheets in acidic and oxidative environments; the increased electron conductivity of support by forming a layered structure and the strong metal-support interaction (SMSI) between metal NPs and g-C3N4 NS.  相似文献   

19.
A one-pot, rapid microwave-assisted method is proposed to directly synthesize water-soluble surface-aminated carbon nanotubes (CNTs-NH2) from pristine CNTs by covalently grafting ethylenediamine onto the surface of CNTs, requiring no cumbersome chemical oxidation of CNTs. The excellent water-solubility and abundant surface functional groups of the CNTs-NH2 lead to the production of uniformly dispersed PtRu nanoparticles (NPs) with diameter ranging from 1.5 to 4.5 nm. Cyclic voltammetry and amperometric studies indicate that the resulting PtRu NPs/CNTs-NH2 nanohybrids have higher electrochemical surface area, better electrocatalytic performance and higher stability towards methanol oxidation compared to PtRu NPs supported on the pristine CNTs. The high electrocatalytic performance is mainly contributed to the small particle size and high dispersion of PtRu NPs and good proton conductivity of CNTs-NH2. This work may demonstrate a universal approach to fabricate superior metal nanocrystalline on CNTs for broad applications in energy systems and sensing devices.  相似文献   

20.
Oxidized and reduced carbon nanofibers (OCNF and RCNF) were used as supports to prepare highly dispersed PtRu catalysts for the direct methanol fuel cells (DMFC). The structural and surface features and electrocatalytic properties of bimetallic PtRu/OCNF and PtRu/RCNF were extensively investigated. FT-IR spectra show that carboxyl groups exist on the surface of the OCNF, which greatly influence the morphology and crystallinity of the electrocatalysts. Transmission electron microscopy and X-ray diffraction consistently show that PtRu/RCNF has a smaller particle size and more uniform distribution than PtRu/OCNF. However, both catalysts have very similar methanol oxidation peak current densities that are significantly lower than commercial catalyst based on current-voltage (CV) results. These two catalysts also give very similar single cell performance except for some difference in the resistance polarization region. The OCNF supported catalysts give better performance than commercial catalysts when current density is higher than 50 mA cm−2 in spite of low methanol oxidation peak current density. These results can be ascribed to the specific surface and structural properties of carbon nanofibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号