首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
BACKGROUND: Trans‐free interesterified fat was produced for possible usage as a spreadable margarine stock. Rice bran oil, palm stearin and coconut oil were used as substrates for lipase‐catalyzed reaction. RESULTS: After interesterification, 137–150 g kg?1 medium‐chain fatty acid was incorporated into the triacylglycerol (TAG) of the interesterified fats. Solid fat contents at 25 °C were 15.5–34.2%, and slip melting point ranged from 27.5 to 34.3 °C. POP and PPP (β‐tending TAG) in palm stearin decreased after interesterification. X‐ray diffraction analysis demonstrated that the interesterified fats contained mostly β′ polymorphic forms, which is a desirable property for margarines. CONCLUSIONS: The interesterified fats showed desirable physical properties and suitable crystal form (β′ polymorph) for possible use as a spreadable margarine stock. Therefore, our result suggested that the interesterified fat without trans fatty acid could be used as an alternative to partially hydrogenated fat. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
Chemical transesterification and blending techniques were used for producing zero trans fats suitable for use as Iranian vanaspati. Triple blends of palm olein (POo), rapeseed (RSO) and sunflower oil (SFO) were subjected to two different treatments: (i) blending and then transesterification (BT) and (ii) transesterification of pure POo before blending with RSO and SFO (TB). The changes in slip melting point (SMP), solid fat content (SFC), carbon number (CN) triacylglycerol (TAG) composition, induction period (IP) of oxidation at 120 °C and IP of crystallisation at 20 °C of blends before and after treatments were investigated. Both BT and TB methods resulted in an increase in the CN48 TAG molecules, SMP and SFC, and a decrease in the IP of oxidation and crystallisation of initial blends. Samples made by TB method had higher CN48 TAG content, SMP, SFC and IP of oxidation, and lower IP of crystallisation than those made by BT method. Correlation between SFC at 20 °C and saturated fatty acid (SFA) content of the treated blends indicated that the SFA must be higher than 33.1% and 26.8% for BT and TB methods, respectively, to obtain fats suitable for use as vanaspati.  相似文献   

3.
Structured lipids (SL) were synthesized via enzymatic (EI) and chemical interesterification of high oleic sunflower oil (SO) and fully hydrogenated high oleic SO with Lipozyme TL IM (Thermomyces lanuginose) for 3 h at 70°C, 300 rpm. Reaction showed changes in the triacylglycerols (TAGs) composition, solid fat content (SFC), thermal behavior, regiospecific distribution, microstructure, and polymorphism. Results revealed that the EI caused considerable rearrangement of the TAG species with lower levels of tri-saturated and tri-unsaturated TAG and higher levels of monoun- and diunsaturated TAG. The interesterified blends showed reduced SFC between 20 and 35°C, lowering the melting point. After 3-h incubation, EI produced acyl migration to some extent. The SL showed the required characteristics for application as bakery fats and as additives for lipid crystallization in the food industry.  相似文献   

4.
Zero‐trans interesterified fats were produced from camellia seed oil (CSO), palm stearin (PS) and coconut oil (CO) with three weight ratios (CSO/PS/CO, 50:50:10, 40:60:10 and 30:70:10) using Lipozyme TL IM. Results showed that the interesterified products contained palmitic acid (34.28–42.96%), stearic acid (3.96–4.72%), oleic acid (38.73–47.95%), linoleic acid (5.92–6.36%) and total medium‐chain fatty acids (MCFA)s (∑MCFAs, 5.03–5.50%). Compared with physical blends, triacylglycerols of OOO and PPP were decreased and formed new peaks of equivalent carbon number (ECN) 44 in the interesterified products. The product CPC3′ showed a slip melting point of 36.8 °C and a wide plastic range of solid fat content (SFC) (45.8–0.4%) at 20–40 °C. Also, the major β′ form was determined. These data indicated that the zero‐trans interesterified fats would have a potential functionality for margarine fats. Subsequently, the antioxidative stabilities of interesterified products with the addition of α‐tocopherol (α‐TOH) and ascorbyl palmitate (AP) were investigated. The results indicated that AP had a dose‐dependent effect at concentrations of 100, 200 and 400 ppm.  相似文献   

5.
Hard fractions of palm oil and coconut oil, blended in the ratios of 90:10, 85:15, 80:20 and 75:25, were interesterified for 8 h using Lipozyme TL IM. Major fatty acids in the blends were palmitic acid (41.7–48.4%) and oleic acid (26.2–30.8%). Medium‐chain fatty acids accounted for 4.5–13.1% of the blends. After interesterification (IE), slip melting point was found to decrease from 44.8–46.8 °C to 28.5–34.0 °C owing to reduction in solids content at all temperatures. At 37.5 °C, the blends containing 25% coconut stearins had 17.4–19% solids, which reduced to 0.4–1.5% on IE, and the slip melting point (28.6 and 28.8 °C) indicated their suitability as margarine base. The reduction in solid fat index of the interesterified fats is attributed to the decrease in high‐melting triacylglycerols in palm oil (GS3 and GS2U type) and increase in triolein (GU3) content from 1 to 9.2%. Retention of tocopherols and β‐carotene during IE was 76 and 60.1%, respectively, in 75:25 palm stearin and coconut stearin blend.  相似文献   

6.
Fat blends, formulated by mixing refined, bleached and deodorised (RBD) palm oil (PO) or RBD palm stearin (PS) with RBD rice bran oil (RBO) in various ratios were subjected to chemical interesterification (CIE) at pilot scale using sodium methoxide (NaOMe) as catalyst. The resultant interesterified fat was processed through a margarine crystalliser under optimised conditions. The blends before and after CIE were investigated for triacylglycerol (TAG) composition, solid fat content (SFC) and melting characteristics, polymorphic form, fatty acid composition (FAC), bioactive (tocols, sterols, oryzanol) constituents and trans fatty acids (TFA). CIE was found to be very effective in terms of rearrangement of fatty acids (FAs) among TAGs and consequent changes in the physical characteristics. The SFC of the interesterified PS/RBO blends decreased significantly ( P  ≤ 0.05) when compared with those of PO/RBO blends. The interesterified binary blends with 50–60% PS and 40–50% RBO, and 70–80% PO and 20–30% RBO had SFC curves in the range of all-purpose type shortenings. CIE facilitated the formation of β' polymorphic forms. FAC of shortenings prepared using the optimised blends contained 15–20% C18:2 polyunsaturated fatty acid (PUFA) and no TFA. Total tocol, sterol and oryzanol content of zero trans shortenings were 650–1145, 408–17 583 and 1309–14 430 ppm. CIE using NaOMe did not affect the bioactive constituents significantly ( P  ≤ 0.05).  相似文献   

7.
8.
Trans-free interesterified fats were prepared from blends of hard palm stearin (hPS) and rice bran oil (RBO) at 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, and 80:20 weight % using immobilized Mucor miehei lipase at 60°C for 6 h with a mixing speed of 300 rpm. Physical properties and crystallization and melting behaviors of interesterified blends were investigated and compared with commercial margarine fats. Lipase-catalyzed interesterification modified triacylglycerol compositions and physical and thermal properties of hPS:RBO blends. Slip melting point and solid fat contents (SFC) of all blends decreased after interesterification. Small, mostly β′ form, needle-shaped crystals, desirable for margarines were observed in interesterified fats. Interesterified blend 40:60 exhibited an SFC profile and crystallization and melting characteristics most similar to commercial margarine fats and also had small needle-like β′ crystals. Interesterified blend 40:60 was suitable for use as a transfree margarine fat.  相似文献   

9.
In this study, the effect of interesterification (using sodium methoxide) on physicochemical characteristics of fully hydrogenated palm olein (FHPO)/soybean oil blends (10 ratios) was investigated. Interesterification changed free fatty acid content, decreased oil stability index, solid fat content (SFC) and slip melting point (SMP), and does not affected the peroxide value. With the increase of FHPO ratio, oil stability index, SFC and SMP increased in both the interesterified and non-interesterified blends. Fats with higher FHPO ratio had narrower plastic range, as well. Compared to the initial blends, interesterified fats had wider plastic ranges at lower temperatures. Both the non-interesterified and interesterified blends showed monotectic behavior. The Gompertz function could describe SFC curve (as a function of temperature, saturated fatty acid (SFA) content or both) and SMP (as a function of SFA) of the interesterified fats with high R2 and low mean absolute error.  相似文献   

10.
Blends of fatty acid-balanced oil that was prepared by the aqueous enzymatic extraction, and with fully hydrogenated soybean oil in different weight ratios from 30:70 to 80:20 (wt%) were interesterified using Lipozyme RM IM in a supercritical CO2 system. The optimal immobilized enzyme dosage, pressure, substrate ratio, temperature, and time were 6% (w/w) of initial substrates, 8 MPa, blend ratio with 60:40 (wt%) of fatty acid-balanced oil and fully hydrogenated soybean oil, a temperature of 70°C, and reaction time of 2 h, respectively. It was observed that at the optimal conditions, under supercritical CO2 conditions, the reaction time of the interesterification was shorter than that of conventional enzymatic interesterification. The slip melting point, solid fat content, fatty acid composition, differential scanning calorimetry, polymorphic form and crystal morphology of the enzymatically interesterified fats were evaluated. The results indicated that the interesterified fats showed desirable physical properties with lower slip melting point and solid fat content, suitable crystal form (β polymorph), and without trans-fatty acid for possible use as a shortening and margarine stock.  相似文献   

11.
Blends of canola oil (CO) and fully hydrogenated cottonseed oil (FHCSO), with 20, 25, 30, 35 and 40% FHCSO (w/w) were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in disaturated-monounsaturated and monosaturated-diunsaturated triacylglycerols in all blends, resulting in lowering of respective melting points. The interesterified blends showed reduced SFC at all temperatures and more linear melting profiles if compared with the original blends. Consistency, expressed as yield value, significantly decreased after the reaction. Iso-solid curves indicated eutectic interactions for the original blends, which were eliminated after randomization. The 80:20, 75:25, 70:30 and 65:35 (w/w) CO: FHCSO interesterified blends showed characteristics which are appropriate for their application as soft margarines, spreads, fat for bakery/all-purpose shortenings, and icing shortenings, respectively.

PRACTICAL APPLICATIONS


Recently, a number of studies have suggested a direct relationship between trans isomers and increased risk of vascular disease. In response, many health organizations have recommended reducing consumption of foods containing trans fatty acids. In this connection, chemical interesterification has proven the main alternative for obtaining plastic fats that have low trans isomer content or are even trans isomer free. This work proposes to evaluate the chemical interesterification of binary blends of canola oil and fully hydrogenated cottonseed oil and the specific potential application of these interesterified blends in food products.  相似文献   

12.
Edible vegetable oil blends, such as coconut:linseed; coconut:safflower; coconut:sunflower; coconut:rice‐bran oils; in the ratio of 70:30 and 60:40 v/v and pure coconut oil (CNO) were interesterified using sodium methoxide 0.5% and subsequently refined to prepare nutritionally superior flowable CNO blends which remained liquid even at sub‐zero temperatures. The slip melting point of chemically interesterified fats could not be determined as they are liquified just after removing from freezing chamber in comparison with the slip melting point of 21.5–26.5 °C for their uninteresterified counterparts. These interesterified fats were liquid and flowable at 6 °C for more than 4 h in a cooling chamber and their solidification temperature ranged between ?2.0 and ?5.5 °C. Free fatty acids showed an increasing trend from 0.35% to 2.0% resulting in decrease in triglycerides After refining these oil blends showed values similar to their controls. However, iodine value of interesterified and uninteresterified oils were close to each other. Differential scanning calorimetry showed the onset of crystallisation at lower temperatures and lower solid fat content for interesterified fats. A nutritionally superior combination of CNO blend which is flowable at low temperature could be prepared.  相似文献   

13.
This research describes the interesterification of Malaysian mango seed oil (MSO) and palm oil mid‐faction (POMF) to develop a cocoa butter equivalent. Fat blends, formulated by binary blends of palm oil mid‐fraction and mango seed oil at different ratios ({100:0}, {60:40}, {50:50}, {40:60}, {0:100}), were subjected to enzymatic interesterification. The solid fat content revealed that all interesterified blends except 100% POMF {0:100} melted completely at body temperature. The interesterified {50:50} blend exhibited a slip melting point (30.35 °C) and saponification value (186.89) close to cocoa butter (P < 0.05). Thermal behaviour analysis by differential scanning calorimetry showed fusion and crystallisation behaviour similar to cocoa butter. Moreover, both the blend and cocoa butter scavenging abilities were based on the 2,2‐diphenyl‐1‐picrylhydrazyl assay, with the concentration required to reduce radical absorbance by 50% (IC50) of 43.08% and 41.1%, respectively. Therefore, the MSO: POMF blend may have use as a health‐promoting food in human diets.  相似文献   

14.
Fat/oil blends, formulated by mixing fully hydrogenated palm oil stearin or palm oil stearin with vegetable oils (canola oil and cottonseed oil) in different ratios from 30:70 to 70:30 (w/w %), were subjected to chemical interesterification reactions on a laboratory scale. Fatty acid (FA) composition, iodine value, slip melting point (SMP) and solid fat content (SFC) of the starting blends were analysed and compared with those of the interesterified blends. SMPs of interesterified blends were decreased compared to starting blends because of extensive rearrangement of FAs among triacylglycerols. These changes in SMP were reflected in the SFCs of the blends after the interesterification. SFCs of the interesterified blends also decreased with respect to the starting blends, and the interesterified products were softer than starting blends. These interesterified blends can be used as an alternative to partial hydrogenation to produce a plastic fat phase that is suitable for the manufacture of margarines, shortenings and confectionary fats.  相似文献   

15.
Poppy seed oil (P. Somniferum) contains palmitic (12%), stearic (3%), oleic (20%) and linoleic acid (65%). Lipolysis with pancreatic lipase indicates the following glyceride composition: S3 (tr), S2U (5%), SU2 (34%) and U3 (61%) or saturated dilinolein (19%), oleo-dilinolein (25%), and trilinolein (27%).  相似文献   

16.
Medium‐ and long‐chain triacylglycerols (MLCTs)–enriched structured lipid (SL) was synthesised through enzymatic interesterification from Cinnamomum camphora seed oil (CCSO) and camellia oil (CO) using Lipozyme RM IM from Rhizomucor miehei as a biocatalyst. Effects of different reaction conditions including substrate molar ratio, reaction time and reaction temperature were investigated. Results showed that 55.81% of total MLCT species (CCO/LaCL, LaCO/LCL, COO/OCO and LaOO/OLaO) was obtained in the interesterified product under the optimal conditions of substrate molar ratio of 1:1.5 (CCSO/CO) at 60 °C for 3 h. Thereafter, fatty acid profiles, tocopherol contents and physiochemical characteristics of the interesterified product and physical blend were comparatively investigated. The fatty acid composition of the interesterified product consisted of capric acid (26.33%), lauric acid (21.29%) and oleic acid (42.33%). It should be mentioned that the interesterified product contained predominantly oleic acid (88.69%) at Sn‐2 position, while MCFAs (68.05%) at Sn‐1,3 positions. Compared with physical blend, the reduction in tocopherol contents and changes of physiochemical characteristics occurred in SL. The smoke point of the interesterified product was much higher than that of the physical blend, which meant that such MLCTs‐enriched SL could be better for cooking purpose.  相似文献   

17.
An empirical methodology was developed for evaluating the fluid to particle heat transfer coefficient (h fp) and overall heat transfer coefficient (U) in bi-axially rotating cans. Conventional particle temperature measurement during thermal processing is generally difficult in cans undergoing agitation processing and is even more difficult in cans going through bi-axial free rotation as in continuous flow turbo cookers. Thin wire flexible thermocouples have helped in gathering temperature data of both particle and liquid in end-over-end batch processes. Wireless temperature loggers have been developed for liquid temperature measurements in continuous flow systems which can be used to estimate U. Evaluation of h fp is still difficult in these systems due to difficulty in gathering particle temperatures. The proposed method involves developing correlations between h fp and U using real time-temperature data gathered from test cans in fixed axial mode and then coupling them with experimentally evaluated U from fluid temperature gathered with wireless sensors to compute h fp for bi-axially rotating cans. The methodology is based on the assumption that within a can, factors that influence U will also influence h fp, and therefore h fp and U are generally interrelated. A three factor, five level central composite rotatatable design and a response surface methodology was used to develop the correlation models for the U and h fp in fixed axial mode with retort temperature (111.6–128.4 °C), glycerin concentration (80–100%), and rotational speed (4–24 rpm) as the main factors. The developed model was used to evaluate the U and h fp in the free bi-axial mode, using a full factorial design (3 × 3 factorial). The method was successfully implemented and an analysis of variance study, as expected, indicated all three major factors to influence the U and h fp values. Glycerin concentration and rotation speed were highly significant (<0.001), while temperature was marginally significant (p < 0.05) with respect to U while all factors were significant with h fp.  相似文献   

18.
Blends of soybean oil (SO) and fully hydrogenated soybean oil (FHSBO), with 10%, 20%, 30%, 40% and 50% FHSBO (w/w) content were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100 °C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in monounsaturated and diunsaturated triacylglycerols, resulting in lowering of respective melting points. The interesterified blends displayed reduced SFC at all temperatures and more linear melting profiles as compared with the original blends. Yield values showed increased plasticity in the blends after the reaction. Isosolid diagrams before and after the reaction showed no eutectic interactions. The 90:10, 80:20, 70:30 and 60:40 interesterified SO:FHSBO blends displayed characteristics suited to application, respectively, as liquid shortening, table margarine, baking/confectionery fat and all-purpose shortenings/biscuit-filling base.  相似文献   

19.
The processing parameters in enzymatic reactions using CO2-expanded (CX) lipids have strong effects on the physical properties of liquid phase, degree of interesterification, and physicochemical properties of the final reaction products. CX-canola oil and fully hydrogenated canola oil (FHCO) were interesterified using Lipozyme TL IM in a high pressure stirred batch reactor. The effects of immobilised enzyme load, pressure, substrate ratio and reaction time on the formation of mixed triacylglycerols (TG) from trisaturated and triunsaturated TG were investigated. The optimal immobilised enzyme load, pressure, substrate ratio and time for the degree of interesterification to reach the highest equilibrium state were 6% (w/v) of initial substrates, 10 MPa, blend with 30% (w/w) of FHCO and 2 h, respectively. The physicochemical properties of the initial blend and interesterified products with different FHCO ratios obtained at optimal reaction conditions were determined in terms of TG composition, thermal behaviour and solid fat content (SFC). The amounts of saturated and triunsaturated TG decreased while the amounts of mixed TG increased as a result of interesterification. Thus, the interesterified product had a lower melting point, and broader melting and plasticity ranges compared to the initial blends. These findings are important for better understanding of CX-lipid reactions and for optimal formulation of base-stocks of margarine and confectionary fats to meet industry demands.  相似文献   

20.
 Nine naphthoquinones, 19 anthraquinones, and nine structurally related monoketonic compounds such as anthrone, xanthone, etc., inhibited mutagenicity induced by 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) in Salmonella typhimurium TA 98 in the presence of rat liver S9 with distinct structure-activity relationships. A carbonyl function was a prerequisite for antimutagenicity while, in general, anthraquinones (IC50 values: 2.3–>213 nmol/ml top agar) were more potent antimutagens than structurally related monoketonic compounds (IC50 values: 25.3–94.9 nmol/ml top agar) and naphthoquinones (IC50 values: 3.7–90.7 nmol/ml top agar). The parent compounds and methyl substituted derivatives were already the most potent while introduction of polar substituents such as COOH and SO3H considerably reduced antimutagenicity. Introduction of OH functions had equivocal effects: with increasing numbers, antimutagenic potencies were concomitantly reduced; however, anthraflavic acid, chrysazin, quinizarin, and especially 5,8-dihydroxy-1,4-naphthoquinone were more potent than the parent compounds. The patterns of inhibition by quinones of 7-ethoxyresorufin-O-dealkylase activities in rat liver microsomes, linked to cytochrome P-450-dependent oxidation of IQ to N-hydroxy-IQ (N-OH-IQ), were in general identical with those obtained in the Salmonella/reversion assay except for chrysophanic acid, emodin, and some naphthoquinones which were very potent in this assay (IC50: 0.20–45.0 μM). On the other hand, mutagenicity of N-OH-IQ in S. typhimurium TA 98NR was not inhibited by nonpolar quinones (except 1,4-naphthoquinone) but rather by polar compounds and especially by hydroxyquinones (IC50 values: 5.3–106.7 nmol/ml top agar or not reached). Inhibition of mutagenic activities of IQ, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-amino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole, and 3-amino-1-methyl-5H-pyrido[4,3-b]indole by chrysazin, chrysophanic acid, physicon, and purpurin varied, but no clearcut structure-activity relationships of the mutagens were observed. Received: 29 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号