首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of multiple orthogonal channels can significantly improve network throughput of multi-hop wireless mesh networks (WMNs). In these WMNs where multiple channels are available, channel assignment is done either in a centralized manner, which unfortunately shows a poor scalability with respect to the increase of network size, or in a distributed manner, where at least one channel has to be dedicated for exchanging necessary control messages or time synchronization has to be utilized for managing the duration of data packet transmission, causing excessive system overhead and waste of bandwidth resource. In this paper, we first formulate multi-channel assignment as a NP-hard optimization problem. Then a distributed, heuristic temporal-spatial multi-channel assignment and routing scheme is proposed, assuming every wireless node in the network is equipped with a single-radio interface. Here the gateway node is set to use all the channels sequentially in a round-robin fashion. This temporal scheme ensures all the nodes that need to directly communicate with the gateway node shall have a fair access to it. For those non-gateway nodes, a spatial scheme where channels are assigned based on their neighbors’ channel usage is adopted to exploit parallel communications and avoid channel interference among nodes. Furthermore, since the routing factors, including channel usage of neighbor nodes, node hop count, node memory size, and node communication history, are all considered along with the channel assignment, network performance, measured by packet delivery latency, channel usage ratio, and memory usage ratio, tends to be considerably enhanced. The simulation results have confirmed that, compared with a couple of well-known multi-channel assignment schemes, such as LCM [21] and ROMA [15], the proposed scheme shows substantial improvement in network throughput with a very modest collision level. In addition, the proposed scheme is highly scalable as the algorithm complexity is only linearly dependent on the total number of channels that are available in the network and the number of neighbors that a network node directly connects to.  相似文献   

2.
Intrusion is any unwanted activity that can disrupt the normal functions of wired or wireless networks. Wireless mesh networking technology has been pivotal in providing an affordable means to deploy a network and allow omnipresent access to users on the Internet. A multitude of emerging public services rely on the widespread, high-speed, and inexpensive connectivity provided by such networks. The absence of a centralized network infrastructure and open shared medium makes WMNs particularly susceptible to malevolent attacks, especially in multihop networks. Hence, it is becoming increasingly important to ensure privacy, security, and resilience when designing such networks. An effective method to detect possible internal and external attack vectors is to use an intrusion detection system. Although many Intrusion Detection Systems (IDSs) were proposed for Wireless Mesh Networks (WMNs), they can only detect intrusions in a particular layer. Because WMNs are vulnerable to multilayer security attacks, a cross-layer IDS are required to detect and respond to such attacks. In this study, we analyzed cross-layer IDS options in WMN environments. The main objective was to understand how such schemes detect security attacks at several OSI layers. The suggested IDS is verified in many scenarios, and the experimental results show its efficiency.  相似文献   

3.
In this paper we address the issue of joint routing, channel re-assignment and rate allocation in multi-radio multi-channel Wireless Mesh Networks (WMNs) with the goal of optimizing the performance of the current set of flows in the WMN. The objective is to balance the instantaneous traffic in the network at the flow level, optimize link-channel assignment and allocate flow rates to achieve proportional fairness given the current traffic and network constraints, including the topology, interference characteristics, number of available channels and radios. Unlike prior work, we do not assume a priori knowledge of traffic, and instead take into account the instantaneous traffic conditions to optimize performance at the flow level, taking both throughput and fairness into account. In this work we analyze the problem and, due to its hardness, propose a fast heuristic algorithm (JRCAR) to solve it. We evaluate this algorithm through numerical experiments, including comparisons against optimal solutions. In addition, we show that JRCAR can be used in a highly responsive system in practical scenarios with time-varying traffic conditions. We implement such a system under the ns-3 simulator, where the simulation results obtained corroborate the behavior observed in the numerical experiments and show that JRCAR is effective in dynamic and practical conditions.  相似文献   

4.
Jorge  Min-You  Wei   《Ad hoc Networks》2008,6(7):1051-1077
The use of multiple channels can substantially improve the performance of wireless mesh networks. Considering that the IEEE PHY specification permits the simultaneous operation of three non-overlapping channels in the 2.4 GHz band and 12 non-overlapping channels in the 5 GHz band, a major challenge in wireless mesh networks is how to efficiently assign these available channels in order to optimize the network performance. We survey and classify the current techniques proposed to solve this problem in both single-radio and multi-radio wireless mesh networks. This paper also discusses the issues in the design of multi-channel protocols and architectures.  相似文献   

5.
Multicast can enhance the performance of wireless mesh networks (WMNs) effectively, which has attracted great attentions in recent years. However, multicast communication in WMNs requires efficient channel assignment strategy to reduce the total network interference and maximize the network throughput. In this paper, the concept of local multicast is proposed to measure interference and solve hidden channel problem in multicast communication. Basing on the concept, we propose a channel assignment algorithm considering the interference of local multicast and forwarding weight of each node (LMFW). The algorithm fully considers partially overlapped channels and orthogonal channels to improve the network performance. Simulations show that the proposed algorithm can reduce interference and improve network capacity of WMNs.  相似文献   

6.
The wireless mesh network is a new emerging broadband technology providing the last-mile Internet access for mobile users by exploiting the advantage of multiple radios and multiple channels. The throughput improvement of the network relies heavily on the utilizing the orthogonal channels. However, an improper channel assignment scheme may lead to network partition or links failure. In this paper we consider the assignment strategy with topology preservation by organizing the mesh nodes with available channels, and aim at minimizing the co-channel interference in the network. The channel assignment with the topology preservation is proved to be NP-hard and to find the optimized solution in polynomial time is impossible. We have formulated a channel assignment algorithm named as DPSO-CA which is based on the discrete particle swarm optimization and can be used to find the approximate optimized solution. We have shown that our algorithm can be easily extended to the case with uneven traffic load in the network. The impact of radio utilization during the channel assignment process is discussed too. Extensive simulation results have demonstrated that our algorithm has good performance in both dense and sparse networks compared with related works.  相似文献   

7.
In order to realize the reduction of equipment cost and the demand of higher capacity,wireless mesh network(WMN) router devices usually have several interfaces and work on multi-channels.Jointing channel allocation,interface assignment and routing can efficiently improve the network capacity.This paper presents an efficient channel assignment scheme combined with the multi-radio link quality source routing(MR-LQSR) protocol,which is called channel assignment with MR-LQSR(CA-LQSR).In this scheme,a physical interference model is established:calculated transmission time(CTT) is proposed as the metric of channel assignment,which can reflect the real network environment and channel interference best,and enhanced weighted cumulative expected transmission time(EWCETT) is proposed as the routing metric,which preserves load balancing and bandwidth of links.Meantime,the expression of EWCETT contains the value of CTT,thus the total cost time of channel assignment and routing can be reduced.Simulation results show that our method has advantage of higher throughput,lower end-to-end time delay,and less network cost over some other existing methods.  相似文献   

8.
IEEE 802.11 based wireless mesh networks with directional antennas are expected to be a new promising technology and an economic approach for providing wireless broadband services in rural areas. In this paper, we discuss interference models and address how they can affect the design of channel assignment in rural mesh networks. We present a new channel assignment framework based on graph coloring for rural wireless mesh networks. The goal of the framework is to allow synchronously transmitting or receiving data from multiple neighbor links at the same time, and continuously doing full-duplex data transfer on every link, creating an efficient rural mesh network without interference. Channel assignment is shown to be NP-hard. We frame this channel allocation problem in terms of Adjacent Vertex Distinguishing Edge Coloring (AVDEC). Detailed assignment results on grid topology are presented and discussed. Furthermore, we design an algorithm. Finally, we evaluate the perform- ance of the proposed algorithm through extensive simulations and show the algorithm is effective to the regular grid topologies, and the number of colors used by the algorithm is upper bounded by A ~ 1. Hence the algorithm guarantees that the number of channels available in standards such as IEEE 802.11a is sufficient to have a valid AVDEC for many grid topologies. We also evaluate the proposed algorithm for arbitrary graphs. The algorithm provides a lower upper bound on the minimum number of channels to the AVDEC index channel assignment problem.  相似文献   

9.
The multi-radio multi-channel wireless mesh network (MRMC-WMN) draws general attention because of its excellent throughput performance, robustness and relative low cost. The closed interactions among power control (PC), channel assignment (CA) and routing is contributed to the performance of multi-radio multi-channel wireless mesh networks (MRMC-WMNs). However, the joint PC, CA and routing (JPCR) design, desired to achieve a global optimization, was poor addressed. The authors present a routing algorithm joint with PC and CA (JPCRA) to seek the routing, power and channel scheme for each flow, which can improve the fairness performance. Firstly, considering available channels and power levels, the routing metric, called minimum flow rate, is designed based on the physical interference and Shannon channel models. The JPCRA is presented based on the genetic algorithm (GA) with simulated annealing to maximize the minimum flow rate, an non-deterministic polynomial-time hard (NP-Hard) problem. Simulations show the JPCRA obtains better fairness among different flows and higher network throughput.  相似文献   

10.
Ningrinla  Raja   《Ad hoc Networks》2008,6(4):508-523
In this paper, we present two intrusion detection techniques for mobile ad-hoc networks, which use collaborative efforts of nodes in a neighborhood to detect a malicious node in that neighborhood. The first technique is designed for detection of malicious nodes in a neighborhood of nodes in which each pair of nodes in the neighborhood are within radio range of each other. Such a neighborhood of nodes is known as a clique [12]. The second technique is designed for detection of malicious nodes in a neighborhood of nodes, in which each pair of nodes may not be in radio range of each other but where there is a node among them which has all the other nodes in its one-hop vicinity. This neighborhood is identical to a cluster as mentioned in [12]. Both techniques use message passing between the nodes. A node called the monitor node initiates the detection process. Based on the messages that it receives during the detection process, each node determines the nodes it suspects to be malicious and send votes to the monitor node. The monitor node upon inspecting the votes determines the malicious nodes from among the suspected nodes. Our intrusion detection system is independent of any routing protocol. We give the proof of correctness of the first algorithm, which shows that it correctly detects the malicious nodes always when there is no message loss. We also show with the help of simulations that both the algorithms give good performance even when there are message losses arising due to unreliable channel.  相似文献   

11.
Channel assignment is a challenge for distributed cognitive networks due to spectrum mobility and lack of centralized entity. We present a dynamic and efficient algorithm via conflict shifting, referred as Shifting-based Channel Assignment (SCA). In this algorithm, the system was modeled with a conflict graph, and users cannot assign the channels that primary users (legacy users) and neighbors already occupied. In order to eliminate the conflicts between neighbors efficiently, secondary users (unlicensed users) try to transfer them through a straight path to the boundary, where conflicts are easier to solve as there are less neighbors for boundary users. Actions in one shift are executed in slots, and users act in a synchronous and separated manner. As a result, some of the conflicting channels are avoid from directly abandoned, and for this, utility of the entire network can be improved. Simulation results show that the proposed algorithm can provide similar utility performance while obviously reducing the communication cost than bargaining-base algorithms. In small scale networks with low user mobility (under 20%), it reduces 50% of the communication overhead than the later.  相似文献   

12.
Most of the current deployment schemes for Wireless Sensor Networks (WSNs) do not take the network coverage and connectivity features into account, as well as the energy consumption. This paper introduces topology control into the optimization deployment scheme, establishes the mathematical model with the minimum sum of the sensing radius of each sensors, and uses the genetic algorithm to solve the model to get the optimal coverage solution. In the optimal coverage deployment, the communication and channel allocation are further studied. Then the energy consumption model of the coverage scheme is built to analyze the performance of the scheme. Finally, the scheme is simulated through the network simulator NS-2. The results show the scheme can not only save 36% energy averagely, but also achieve 99.8% coverage rate under the condition of 45 sensors being deployed after 80 iterations. Besides, the scheme can reduce the five times interference among channels.  相似文献   

13.
The IEEE 802.16 standard for wireless broadband networks includes the mesh mode in its specifications, where network nodes interact to deliver packets from a client to a remote destination through intermediate nodes. This paper presents a study of the capacity of IEEE 802.16 wireless networks in mesh mode by using M/G/1/L queuing model that represents each network node by incorporating the features of the standard in order to calculate the average delay and throughput in the node. An iterative method integrates the calculation results at each node, obtaining the end‐to‐end delay from any node of the mesh to the Base Station. Because of multiple hops, a node far from the Base Station may have its flows damaged. To minimize this problem, we propose a criterion for a fair distribution of resources. We show the numerical results of the model which indicate a good fit when compared with simulation results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The aggregate capacity of a wireless mesh network (WMN) is severely affected by interflow interference. In this paper, we propose a network architecture that incorporates directional antennas with multiple orthogonal channels to effectively enhance the performance of WMNs. First, a sectored connectivity graph is introduced to model multiradio multichannel WMNs with directional antennas. Next we formulate the topology design, directional interface assignment, channel allocation, and routing mathematically as a mixed integer linear programming problem. This problem is solved using an iterated local search algorithm to obtain optimized network resource allocation. Simulation results indicate that the proposed architecture can achieve higher packet delivery ratio while providing better network fairness. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In recent years, Wireless Sensor Networks (WSNs) have demonstrated successful applications for both civil and military tasks. However, sensor networks are susceptible to multiple types of attacks because they are randomly deployed in open and unprotected environments. It is necessary to utilize effective mechanisms to protect sensor networks against multiple types of attacks on routing protocols. In this paper, we propose a lightweight intrusion detection framework integrated for clustered sensor networks. Furthermore, we provide algorithms to minimize the triggered intrusion modules in clustered WSNs by using an over‐hearing mechanism to reduce the sending alert packets. Our scheme can prevent most routing attacks on sensor networks. In in‐depth simulation, the proposed scheme shows less energy consumption in intrusion detection than other schemes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Wireless sensor and actor networks (WSANs) have been increasingly popular for environmental monitoring applications in the last decade. While the deployment of sensor nodes enables a fine granularity of data collection, resource-rich actor nodes provide further evaluation of the information and reaction. Quality of service (QoS) and routing solutions for WSANs are challenging compared to traditional networks because of the limited node resources. WSANs also have different QoS requirements than wireless sensor networks (WSNs) since actors and sensor nodes have distinct resource constraints.In this paper, we present, LRP-QS, a lightweight routing protocol with dynamic interests and QoS support for WSANs. LRP-QS provides QoS by differentiating the rates among different types of interests with dynamic packet tagging at sensor nodes and per flow management at actor nodes. The interests, which define the types of events to observe, are distributed in the network. The weights of the interests are determined dynamically by using a nonsensitive ranking algorithm depending on the variation in the observed values of data collected in response to interests. Our simulation studies show that the proposed protocol provides a higher packet delivery ratio and a lower memory consumption than the existing state of the art protocols.  相似文献   

17.
In recent years, in order to make efficient use of spectrum resources, much attention has been given to solving the problem of channel assignment in cognitive radio‐based wireless mesh networks (CR‐WMNs). Current approaches focus mainly on avoiding interference in order to enhance performance in terms of throughput. WMNs are intended to provide low‐cost multimedia communication. Therefore, in order to provide low‐cost real‐time communication, channel assignment in CR‐WMNs should take into consideration not only the issue of throughput, but also energy consumption and delays. In this paper, we first define an optimization problem to maximize the end‐to‐end throughput per unit of energy consumption while minimizing, as well as guaranteeing, the delay constraint specified for a data stream. Based on this, we then propose a novel distributive heuristic channel assignment approach to solve the optimization problem in a self‐organized manner. Finally, we present the simulation results to evaluate the performance of the proposed solution in terms of end‐to‐end throughput per unit of energy consumption and delays. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A secure authentication and billing architecture for wireless mesh networks   总被引:2,自引:0,他引:2  
Wireless mesh networks (WMNs) are gaining growing interest as a promising technology for ubiquitous high-speed network access. While much effort has been made to address issues at physical, data link, and network layers, little attention has been paid to the security aspect central to the realistic deployment of WMNs. We propose UPASS, the first known secure authentication and billing architecture for large-scale WMNs. UPASS features a novel user-broker-operator trust model built upon the conventional certificate-based cryptography and the emerging ID-based cryptography. Based on the trust model, each user is furnished with a universal pass whereby to realize seamless roaming across WMN domains and get ubiquitous network access. In UPASS, the incontestable billing of mobile users is fulfilled through a lightweight realtime micropayment protocol built on the combination of digital signature and one-way hash-chain techniques. Compared to conventional solutions relying on a home-foreign-domain concept, UPASS eliminates the need for establishing bilateral roaming agreements and having realtime interactions between potentially numerous WMN operators. Our UPASS is shown to be secure and lightweight, and thus can be a practical and effective solution for future large-scale WMNs. Yanchao Zhang received the B.E. degree in Computer Communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, and the M.E. degree in Computer Applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002. Since September 2002, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Yuguang Fang received the BS and MS degrees in Mathematics from Qufu Normal University, Qufu, Shandong, China, in 1984 and 1987, respectively, a Ph.D degree in Systems and Control Engineering from Department of Systems, Control and Industrial Engineering at Case Western Reserve University, Cleveland, Ohio, in January 1994, and a Ph.D degree in Electrical Engineering from Department of Electrical and Computer Engineering at Boston University, Massachusetts, in May 1997. From 1987 to 1988, he held research and teaching position in both Department of Mathematics and the Institute of Automation at Qufu Normal University. From September 1989 to December 1993, he was a teaching/research assistant in Department of Systems, Control and Industrial Engineering at Case Western Reserve University, where he held a research associate position from January 1994 to May 1994. He held a post-doctoral position in Department of Electrical and Computer Engineering at Boston University from June 1994 to August 1995. From September 1995 to May 1997, he was a research assistant in Department of Electrical and Computer Engineering at Boston University. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology, Newark, New Jersey. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida, Gainesville, Florida, where he got early promotion to Associate Professor with tenure in August 2003, and to Full Professor in August 2005. His research interests span many areas including wireless networks, mobile computing, mobile communications, wireless security, automatic control, and neural networks. He has published over one hundred and fifty (150) papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He also received the 2001 CAST Academic Award. He is listed in Marquis Who’s Who in Science and Engineering, Who’s Who in America and Who’s Who in World. Dr. Fang has actively engaged in many professional activities. He is a senior member of the IEEE and a member of the ACM. He is an Editor for IEEE Transactions on Communications, an Editor for IEEE Transactions on Wireless Communications, an Editor for IEEE Transactions on Mobile Computing, an Editor for ACM Wireless Networks, and an Editor for IEEE Wireless Communications. He was an Editor for IEEE Journal on Selected Areas in Communications: Wireless Communications Series, an Area Editor for ACM Mobile Computing and Communications Review, an Editor for Wiley International Journal on Wireless Communications and Mobile Computing, and Feature Editor for Scanning the Literature in IEEE Personal Communications. He has also actively involved with many professional conferences such as ACM MobiCom’02 (Committee Co-Chair for Student Travel Award), MobiCom’01, IEEE INFOCOM’06, INFOCOM’05 (Vice-Chair for Technical Program Committee), INFOCOM’04, INFOCOM’03, INFOCOM’00, INFOCOM’98, IEEE WCNC’04, WCNC’02, WCNC’00 (Technical Program Vice-Chair), WCNC’99, IEEE Globecom’04 (Symposium Co-Chair), Globecom’02, and International Conference on Computer Communications and Networking (IC3N) (Technical Program Vice-Chair).  相似文献   

19.
Access control is one of the major security concerns for wireless sensor networks. However, applying conventional access control models that rely on the central Certificate Authority and sophisticated cryptographic algorithms to wireless sensor networks poses new challenges as wireless sensor networks are highly distributed and resource-constrained. In this paper, a distributed and fine-grained access control model based on the trust and centrality degree is proposed (TC-BAC). Our design uses the combination of trust and risk to grant access control. To meet the security requirements of an access control system with the absence of Certificate Authority, a distributed trust mechanism is developed to allow access of a trusted node to a network. Then, centrality degree is used to assess the risk factor of a node and award the access, which can reduce the risk ratio of the access control scheme and provide a certain protection level. Finally, our design also takes multi-domain access control into account and solves this problem by utilizing a mapping mechanism and group access policies. We show with simulation that TC-BAC can achieve both the intended level of security and high efficiency suitable for wireless sensor networks.  相似文献   

20.
This paper proposes a tabu search heuristic for solving the routing and wavelength assignment problem in multigranular optical networks, considering the wavelength-continuity constraint and a set of connections to satisfy. For a number of fibers per link, a number of wavebands per fiber, and a number of wavelengths per waveband, this algorithm attempts to minimize the total number of ports used in the network by efficiently grouping lightpaths into bands and fibers, and switching the whole bands and fibers. The algorithm has been implemented and tested on the NSFNET network, and comparisons have been made with the Balanced Path Routing and Heavy Traffic First (BPHT) algorithm in terms of number of ports. Generally, the results obtained with our tabu search heuristic are better than those provided by this algorithm.
Samuel PierreEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号