首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
绕组交叉换位对高频变压器参数的影响   总被引:2,自引:0,他引:2  
交叉换位技术广泛应用于高频变压器绕组设计。本文从电磁场能量的角度出发,分析了交叉换位对变压器绕组交流电阻和漏感等参数的影响。推导出了只与线圈尺寸、原副边相对位置及电流变比等结构参数有关的KR、KL等系数来表征线圈交流电阻和漏感随交叉换位技术的变化情况。实例计算结果证实线圈交流电阻、漏感的变化分别与KR、KL呈线性关系,表明这两个指标可以反映出绕组交流电阻和漏感的变化规律。  相似文献   

2.
高频变压器绕组结构和排布方式对漏电感与绕组损耗的影响很大,明确不同绕组结构和排布方式对漏电感和绕组损耗的影响,对于高频变压器大规模优化设计至关重要。基于有限元分析方法,本文研究了无交叉换位、部分交叉换位和完全交叉换位方式,以及绕组层数对宽频区间内漏电感、绕组损耗的影响规律。结果表明,导体内高频涡流效应造成漏电感和交流电阻存在频变特性;交叉换位程度越高,漏电感和绕组损耗的降低越明显;控制绕组总匝数保持不变的情况下,降低绕组层数可以显著降低漏电感和绕组损耗。最后提出了高频变压器漏电感和绕组损耗的控制方法,该方法对于高频变压器的优化设计具有一定的指导意义。  相似文献   

3.
绕组交叉换位对高频变压器漏磁场影响很大,进而对绕组电磁力产生影响。为了明确不同交叉换位结构对高频变压器漏磁场和电磁力的影响规律,基于有限元分析方法,文中首先对无交叉换位、部分交叉换位和完全交叉换位方式下高频变压器的导体区域电流密度、铁心窗口区域漏磁场强度进行计算,将仿真结果与实验结果进行对比,验证了有限元模型的有效性。然后,计算了不同绕组布置方式下的绕组电磁力。结果表明:部分交叉换位后邻近效应削弱,漏磁场强度和电磁力降低一半,完全交叉换位后邻近效应几乎全部消除,漏磁场强度和电磁力为无交叉换位时的1/4。上述工作为高频变压器绕组结构设计和提升绕组抗变形能力具有一定指导意义。  相似文献   

4.
为在设计阶段对大功率中频变压器漏感值进行准确法估算,基于中频变压器一维等效模型,根据漏磁场分布特征,通过能量法进行了变压器漏感参数解析公式推导。在此基础上,根据理想漏磁场模型与实际的差异,修正了解析公式中绕组的电导率与漏磁场的计算高度。通过比较两台样机在50 Hz~10 k Hz频段下的漏感实测与计算结果,证实了对这2个参数同时进行校正,可使变压器漏感计算误差减小到5%以内,并进一步分析了仍然存在的误差产生的原因。通过样机1与样机2的漏感值对比,证明了绕组交叉换位技术可有效减小变压器漏感。  相似文献   

5.
《电网技术》2021,45(11):4523-4531
随着工程中对三绕组高频变压器的需求逐渐增多,准确计算三绕组高频变压器电磁参数并对其结构进行优化设计具有重要的工程价值。根据三绕组高频变压器结构,推导了中间位置绕组的交流电阻系数计算式。求解得到三绕阻高频变压器中压绕组区域漏磁能量大小,用以计算高低压绕组间漏电感。使用自由参数扫描法进行设计的过程中,采取给定高压绕组初始位置进行迭代计算的方式,实现同时对三绕组高频变压器2个漏电感进行控制。按照最优设计方案制作了一台5kHz/7kVA三绕组高频变压器样机,通过仿真分析与试验测试验证了计算方法与设计方案的有效性。  相似文献   

6.
高频变压器设计中通常采用初、次级绕组交叉换位排布方式来降低漏电感和交流电阻,但是绕组结构改变会同时影响变压器内部寄生电容参数大小和分布情况,进而造成宽频带谐振特性发生变化。为了明确不同交叉换位排布方式对寄生电容、频变漏电感以及谐振频率的影响规律,该文首先结合绕组的排布方式和绕制方法,建立4种典型绕组结构的分布等效电容表征模型,基于能量等效原理推导出相应绕组排布方式下六集总电容表征模型的电容解析计算式。然后,为了计及宽频区间内绕组漏电感参数的频变特性,基于电磁对偶原理建立含频变参数有损电感表征模型,并给出各项参数提取方法。在此基础上,构建不同绕组布置方式下高频变压器宽频带阻抗特性分析模型。将寄生电容、漏电感参数以及开短路阻抗特性和谐振频点计算结果与仿真和实验测量结果进行对比,验证了所提方法的有效性。  相似文献   

7.
绕组高频涡流效应对大容量高频变压器漏电感的影响很大,但目前还缺少计及漏感频变特性的有效解析计算方法。该文在对高频变压器漏感频变特性的产生机理和组成部分进行分析的基础上,提出一种新的考虑频变特性的漏电感解析计算方法。设计制作了一台4.5k Hz、5k VA非晶合金磁芯高频变压器试验模型,将该文方法的计算结果与有限元仿真和实验测量结果对比,结果表明新方法的全局平均相对偏差为8.14%,验证了该文方法的有效性。考虑绕组布置方式的影响,推导出绕组完全交叉换位布置下的漏电感解析计算式,明确了交叉换位对宽频区间内漏感的影响。  相似文献   

8.
《高电压技术》2021,47(9):3218-3225
在低压螺旋式绕组中采用换位结构未能完全消除绕组内环流,并联导线间的电流仍存在差异。分析换位结构下绕组电流分布特性是计算绕组短路电磁力的基础和前提。以往在计算短路电磁力时,往往忽略短路电流的分布特性。在考虑换位结构的基础上对两种110 k V变压器低压绕组的电流分布特性进行研究,发现低压绕组导线回路间电流差值与峰值电流平均值的比值最大可达8.67%。绕组结构变化引起的导线回路漏感抗差异是导致并联回路电流分布不均的主要原因。同时,计算获得了不同电流分布情况下低压绕组各线饼中导线受到的电磁力分布规律,发现电流分布不均匀程度越大,导线在换位前后电磁力改变量越大,最大可达5.9%。定义导线回路间电流差值与峰值电流平均值的比值为绕组电流分布不均匀系数,发现电流分布不均匀系数随高度hc、导线辐向宽度wc的增大而增大。通过比较了两种类型低压绕组中电磁力分布特点,对螺旋绕组结构设计提出了建议。该研究结果可为变压器设计过程中结构参数的选取和校核绕组短路稳定性提供参考。  相似文献   

9.
基于参数辨识的变压器绕组变形在线监测方法   总被引:3,自引:0,他引:3  
变压器绕组变形导致的内部匝间故障已经上升至事故率的首位,对电网安全性危害极大。为此,提出一种变压器绕组变形在线监测工程方法。利用以傅里叶为理论基础的动态向量模型,在保持高精度的条件下简化变压器电磁暂态模型,并讨论不同运行状态下模型参数辨识解的个数。当变压器空载合闸时辨识出绕组电阻参数,在变压器稳态运行时利用已辨识出的电阻参数修改参数辨识模型,并辨识漏感参数。利用绕组变形与漏电感参数之间的关系,实现对变压器绕组变形在监测。建立了变压器绕组变形的仿真模型,使用有限元方法计算变压器绕组变形的短路电感值,验证了变压器绕组在线监测方法的有效性。  相似文献   

10.
将空心绕组应用于大功率中频变压器,在提高绕组材料利用率的同时,变压器的散热效率也可得到提升。但因为其较为特殊的形状,使得通过直接建立解析模型的方法,计算空心绕组高频交流电阻较为困难。为了解决这一问题,该文结合解析计算与数值计算方法,通过大量的有限元模型计算,得到了中频变压器空心绕组与其对应的实心绕组高频交流电阻之间的关系。这种关系被定义为一个新参数,即空心电阻系数。通过分析空心电阻系数与相关参数之间的关系,经典Dowell解析计算公式可被拓展至空心绕组的交流电阻计算中。通过对比一台中频变压器样机空心绕组交流电阻的解析计算、有限元数值计算与实验计算结果,验证了该方法的正确性与有效性。  相似文献   

11.
基于高频变压器一维模型漏感产生与减少研究   总被引:1,自引:0,他引:1  
陆地  李翔  黄宝红  王沛 《电源技术》2012,36(8):1154-1157
通过反激变换器的拓扑结构图与等效模型得到高频变压器漏感变化对开关管耐压的影响,并以平面卧式变压器为例建立一维模型,且进行了高频变压器漏感定量计算和研究,阐述了高频变压器漏感的危害。从高频变压器的一维模型出发,通过建立匝间距离ha、透入深度δ、线圈窗口在X轴上的宽度w等因素的数学表达式,利用关系曲线确定出影响高频变压器漏感大小主要因素。经过实验与研究分析,提出了增大绕组宽度、增大绕组高宽比、增加绕组之间的耦合程度新的减少高频变压器漏感的方法,实现了减少高频变压器漏感的目的,并以实验验证了该方法的可行性。  相似文献   

12.
变压器漏感参数的计算   总被引:1,自引:0,他引:1  
由于变压器内部磁路本身的特点和励磁涌流波形受多种因素的影响,使得变压器差动保护存在多种误动的可能。功率差动原理、磁通特性识别法、等值电路参数鉴别法及基于变压器的回路方程法等摆脱了励磁涌流及过励磁的影响,实现了与差动保护不同的保护思路,但都要求预知原副边绕组电阻和漏感参数。绕组电阻可以通过测量得到,关于漏感尚无精确的求取方法。鉴于此种情况,本文提出了一种参数辨识方法,通过测量稳态瞬时电压和电流,利用最小二乘法能够快速准确辨识出原副边绕组漏感,为新型保护原理的推广奠定了基础。并且讨论了不同采样频率和截止频率下辨识结果的误差。通过电磁暂态仿真程序EMTP仿真和实际的变压器试验,验证了该算法的正确性,误差很小,具有极好的应用价值。  相似文献   

13.
集肤和邻近效应对平面磁性元件绕组损耗影响的分析   总被引:4,自引:1,他引:4  
提高磁性元件的工作频率,可以减少磁性元件的大小。但是随着工作频率的提高,集肤和邻近效应使绕组的损耗增加。文中基于磁性元件绕组的一维模型,对平面磁性元件绕组中的涡流效应进行分析。利用一维条件下,集肤和邻近效应的正交性,得出了集肤和邻近效应各自产生的损耗随绕组厚度和频率的变化趋势,指出简单地把厚绕组分割为薄绕组的并联不能减少绕组的损耗;同时分析利用原副边绕组交叉换位技术减少变压器绕组损耗的原理。通过有限元分析软件和实验证实分析结果的正确性和有效性。  相似文献   

14.
短路电抗法是检测电力变压器绕组变形的有效方法之一,开展变压器短路电抗的仿真计算研究,对于获取各种绕组变形故障时的特征信息具有重要意义。基于实验室中一台模型变压器的结构参数,分别建立了绕组正常及存在匝间短路故障时的有限元仿真模型,利用"磁-路"耦合的方法对变压器的漏磁场和漏感参数进行了计算,分析了绕组变形位置与变压器漏磁场之间的关系,并与在模型变压器上的实验结果进行了对比,结果表明:绕组内部发生匝间短路故障时,在径向中部的匝间短路对漏磁场的影响较大,而在轴向中层绕组的匝间短路对漏磁场的影响较小。研究成果对于指导短路电抗法的现场应用和绕组故障的检测提供了一定的理论依据。  相似文献   

15.
基于平面磁性元件绕组的一维模型,分析利用初、次级交叉换位技术减少反激式平面变压器绕组交流损耗的原理,进一步分析了绕组电流的上升(或下降)斜率与绕组交流损耗的关系.比较了CCM与DCM模式下绕组的交流损耗,得出在相同输出功率下,DCM比CCM的交流损耗更大.DCM和CCM两种工作模式下应用交叉换位技术减少绕组交流损耗的效果均很明显,且减少的比例相近.通过有限元分析软件和实验证实了分析结果的正确性和有效性.  相似文献   

16.
基于有限元法的变压器漏感计算在绕组变形中的应用   总被引:1,自引:0,他引:1  
电力变压器电磁分析与参数计算在科学研究与工程应用中一直受到普遍的重视,而绕组变形作为故障隐患的重要特征,其变形程度尚无法量化。以有限元方法为研究基础,利用大型有限元软件ANSYS建立变压器铁芯、绕组模型;以场路耦合方法实现变压器漏磁场的仿真,同时利用能量法原理完成变压器漏感参数的计算。针对电力变压器发生绕组变形将会导致漏感参数发生变化的基本特征,提出通过改变绕组的基本几何尺寸模拟绕组变形,计算变形前后以及各种变形形式下的漏感参数值,考察绕组变形状态和漏感参数变化量之间的关系。仿真计算结果与测量值比较,表明方法的正确性、有效性和实用性。  相似文献   

17.
变压器外部故障时,变压器内部绕组的匝数及漏磁通所经磁路均未变化,变压器绕组发生故障时,变压器漏电感肯定会发生变化。通过测量变压器的短路电抗并计算分析,可以判断变压器的绕组故障。参数辨识法诊断变压器绕组故障,即是通过测量变压器三相电压和电流量,采用递推最小二乘法,辨识变压器绕组漏抗,从而判断变压器绕组是否故障。  相似文献   

18.
电力变压器内部短路故障对短路电抗的影响   总被引:1,自引:0,他引:1  
根据电力变压器设计短路电抗的计算方法,研究了电力变压器内部各种短路故障对短路电抗的影响,指出了内部短路引起沿轴向安匝分布不均匀,从而增强了横向漏磁场分量。横向漏磁场对漏电感的作用是增加的。当内部短路发生在原边侧绕组时,虽然横向漏磁场分量增加了,但是原边绕组励磁总安匝数相对减少了,而且它引起漏电感减小的作用大于横向漏磁场分量增加引起漏电感增加的作用,所以短路电抗是减少的;当内部短路发生在线端短路的副边侧时,原边侧的短路电抗可能大于正常值。无论内部短路发生在何处,短路电抗均不等于额定值,其值之增加或减少随短路位置的变化是非线性的。  相似文献   

19.
定子端部漏感是定子漏感参数的重要组成部分,准确的端部漏感计算是电机过渡过程分析和高性能电机控制的关键。利用能量法、Boit-Savart定律、矢量磁位法对喇叭口形、半椭圆形以及半矩形绕组端部漏感进行计算,并与试验测试结果对比,分析得到不同形状端部漏感最合适的计算方法。分析结果表明,喇叭口形绕组端部漏感宜采用矢量磁位法计算,半椭圆形绕组端部漏感宜采用能量法计算,半矩形绕组端部漏感宜采用Boit-Savart法或矢量磁位法计算。  相似文献   

20.
通过在Saber中搭建LCC谐振电路,在固定开关频率和占空比下,根据输出功率,分析了高频变压器的原边电流、电压和视在功率。结合传统AP法,计算出合适的绕制参数和磁芯尺寸。利用Maxwell软件,在3D瞬态场下,分析变压器原副边的耦合系数,确定合适副边对原边的漏感值。再利用Saber中自带的磁元件工具箱,在2D环境下分析绕组分布和层间电容值。仿真结果最终得到符合谐振要求的寄生参数。仿真设计有助于在实际制作变压器之前,对绕制参数及工艺提供可靠指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号