首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
《Journal of power sources》2006,160(1):510-513
The paper describes the design and performance of a breadboard prototype for a 5 kW fuel-processor for powering a solid oxide fuel cell (SOFC) stack. The system was based on a small, modular catalytic Microlith auto-thermal (ATR) reactor with the versatility of operating on diesel, Jet-A or JP-8 fuels. The reforming reactor utilized Microlith substrates and catalyst technology (patented and trademarked). These reactors have demonstrated the capability of efficiently reforming liquid and gaseous hydrocarbon fuels at exceptionally high power densities. The performance characteristics of the auto-thermal reactor (ATR) have been presented along with durability data. The fuel processor integrates fuel preparation, steam generation, sulfur removal, pumps, blowers and controls. The system design was developed via ASPEN® Engineering Suite process simulation software and was analyzed with reference to system balance requirements. Since the fuel processor has not been integrated with a fuel cell, aspects of thermal integration with the stack have not been specifically addressed.  相似文献   

2.
In this work, the performance of a PEMFC (proton exchange membrane fuel cell) system integrated with a biogas chemical looping reforming processor is analyzed. The global efficiency is investigated by means of a thermodynamic study and the application of a generalized steady-state electrochemical model. The theoretical analysis is carried out for the commercial fuel cell BCS 500W stack. From literature, chemical looping reforming (CLR) is described as an attractive process only if the system operates at high pressure. However, the present research shows that advantages of the CLR process can be obtained at atmospheric pressure if this technology is integrated with a PEMFC system. The performance of a complete fuel cell system employing a fuel processor based on CLR technology is compared with those achieved when conventional fuel processors (steam reforming (SR), partial oxidation (PO) and auto-thermal reforming (ATR)) are used. In the first part of this paper, the Gibbs energy minimization method is applied to the unit comprising the fuel- and air-reactors in CLR or to the reformer (SR, PO, ATR). The goal is to investigate the characteristics of these different types of reforming process to generate hydrogen from clean model biogas and identify the optimized operating conditions for each process. Then, in the second part of this research, material and energy balances are solved for the complete fuel cell system processing biogas, taking into account the optimized conditions found in the first part. The overall efficiency of the PEMFC stack integrated with the fuel processor is found to be dependent on the required power demand. At low loads, efficiency is around 45%, whereas, at higher power demands, efficiencies around 25% are calculated for all the fuel processors. Simulation results show that, to generate the same molar flow-rate of H2 to operate the PEMFC stack at a given current, the global process involving SR reactor is by far much more energy demanding than the other technologies. In this case, biogas is burnt in a catalytic combustor to supply the energy required, and there is a concern with respect to CO2 emissions. The use of fuel processors based on CLR, PO or ATR results in an auto-thermal global process. If CLR based fuel processor is employed, CO2 can be easily recovered, since air is not mixed with the reformate. In addition, the highest values of voltage and power are achieved when the PEMFC stack is fed on the stream coming from SR and CLR fuel processors. When a H2 mixture is produced by reforming biogas through PO and ATR technologies, the relative anode overpotential of a single cell is about 55 mV, whereas, with the use of CLR and SR processes, this value is reduced to ∼37 and 24 mV, respectively. In this way, CLR can be seen as an advantageous reforming technology, since it allows that the global process can be operated under auto-thermal conditions and, at the same time, it allows the PEMFC stack to achieve values of voltage and power closer to those obtained when SR fuel processors are used. Thus, efforts on the development of fuel processors based on CLR technology operating at atmospheric pressure can be considered by future researchers. In the case of biogas, the CO2 captured can produce additional economical benefits in a ‘carbon market’.  相似文献   

3.
《Journal of power sources》2006,162(1):597-605
The paper describes a reforming system for converting methanol into pure hydrogen. The system is based on an autothermal reforming reactor operating at elevated pressures followed by membrane-based hydrogen separation. The high-pressure membrane retentate stream is combusted and expanded through a turbine generating additional power. Process simulation illustrates the effects of the system operating parameters on performance and demonstrates system reforming efficiency up to ∼90%. When coupled with a PEM fuel cell and an electrical generator, overall fuel to electricity efficiency can be >48% depending upon the efficiency of a PEM fuel cell stack.  相似文献   

4.
The removal of CO from hydrocarbon- and methanol-derived hydrogen can be performed by a series of methods to achieve the 10 ppm CO limit required for proton exchange membrane fuel cell (PEMFC) applications. The fuel processing includes reforming of the feed followed by water-gas shift (WGS) and a final CO removal with the latter decreasing the CO concentration below the desirable level. Pressure swing adsorption (PSA), membrane separation, selective methanation (SMET) and preferntial oxidation (PROX) are the applicable techniques as the final clean-up step. The appropriate method depends on the scale but for small scale portable fuel processors, catalytic processes are more appropriate due to the operating conditions close to that of PEMFC. The PROX appears to be the best due to rapid reaction rate and mild operation conditions which renders intensification of the processes possible. Extensive research and development efforts are underway to increase catalyst activity and improve the temperature window of the reaction.  相似文献   

5.
In this paper the performance of a complete fuel cell system processing ethanol fuel has been analyzed as a function of the main fuel cell operating parameters. The fuel processor is based on the steam reforming process, followed by high- and low-temperature shift reactors, and carbon monoxide preferential oxidation reactor, which are coupled to a polymeric fuel cell (PEMFC). The goal was to analyze and improve the fuel cell system performance by simulation techniques. PEMFC operation has been analyzed using an available parametric model, which was implemented within HYSYS environment software. Pinch Analysis concepts were used to investigate the process energy integration and determine the maximum efficiency minimizing ethanol consumption. The system performance was analyzed for the SR-12 Modular PEM Generator, the Ballard Mark V fuel cell and the BCS 500 W stack. The net system efficiency is dependent on the required power demand. Efficiency values higher than 50% at low loads and less than 30% at high power demands are computed. In addition, the effect of fuel cell temperature, pressure and hydrogen utilization was analyzed. The trade-off between the reformer yield and the fuel cell performance defines the optimal operation pressure. The cell temperature determines operating zones where the water, involved in the reforming reactions, can be produced or demanded.  相似文献   

6.
One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd–Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite® indicated very good match between theoretical predictions and experimental results indicating that the underlying assumption of the simple model of conversion of hydrocarbons to CO and H2 followed by equilibrium reconstitution to methane appears to be reasonable one.  相似文献   

7.
In this study, we evaluated the properties of a reforming catalyst system for generating hydrogen from liquified petroleum gas (LPG) fuel and supplying hydrogen to an LPG engine. The fuel supply system of the LPG engine was modified in order to supply LPG to a reforming catalyst prior to combustion. A test apparatus was also built to evaluate the performance of a reforming catalyst system. Gas chromatography was used to measure H2, N2, O2, CH4, and CO emissions, while CO2 emissions were measured using an exhaust gas analyzer. The products concentration of the reforming reactions according to reforming fuel quantity and air flow was analyzed. In actual engine operating conditions, H2 yield and air flow were proportional, whereas H2 yield and fuel reforming fuel quantity were inversely proportional. The experimental results of the reforming reaction under various conditions will be used as the basic data for integrating the reforming catalyst system into an actual operating engine.  相似文献   

8.
Cogeneration power plants based on fuel cells are a promising technology to produce electric and thermal energy with reduced costs and environmental impact. The most mature fuel cell technology for this kind of applications are polymer electrolyte membrane fuel cells, which require high-purity hydrogen.The most common and least expensive way to produce hydrogen within today's energy infrastructure is steam reforming of natural gas. Such a process produces a syngas rich in hydrogen that has to be purified to be properly used in low temperature fuel cells. However, the hydrogen production and purification processes strongly affect the performance, the cost, and the complexity of the energy system.Purification is usually performed through pressure swing adsorption, which is a semi-batch process that increases the plant complexity and incorporates a substantial efficiency penalty. A promising alternative option for hydrogen purification is the use of selective metal membranes that can be integrated in the reactors of the fuel processing plant. Such a membrane separation may improve the thermo-chemical performance of the energy system, while reducing the power plant complexity, and potentially its cost. Herein, we perform a technical analysis, through thermo-chemical models, to evaluate the integration of Pd-based H2-selective membranes in different sections of the fuel processing plant: (i) steam reforming reactor, (ii) water gas shift reactor, (iii) at the outlet of the fuel processor as a separator device. The results show that a drastic fuel processing plant simplification is achievable by integrating the Pd-membranes in the water gas shift and reforming reactors. Moreover, the natural gas reforming membrane reactor yields significant efficiency improvements.  相似文献   

9.
《Journal of power sources》2006,154(2):379-385
There are large efforts in exploring the on-board reforming technologies, which would avoid the actual lack of hydrogen infrastructure and related safety issues. From this view point, the present work deals with the comparison between two different 10 kWe fuel processors (FP) systems for the production of hydrogen-rich fuel gas starting from diesel oil, based respectively on autothermal (ATR) and steam-reforming (SR) process and related CO clean-up technologies; the obtained hydrogen rich gas is fed to the PEMFC stack of an auxiliary power unit (APU). Based on a series of simulations with Matlab/Simulink, the two systems were compared in terms of FP and APU efficiency, hydrogen concentration fed to the FC, water balance and process scheme complexity. Notwithstanding a slightly higher process scheme complexity and a slightly more difficult water recovery, the FP based on the SR scheme, as compared to the ATR one, shows higher efficiency and larger hydrogen concentration for the stream fed to the PEMFC anode, which represent key issues for auxiliary power generation based on FCs as compared, e.g. to alternators.  相似文献   

10.
《Journal of power sources》2006,157(1):430-437
The paper describes a new design for a reforming system for converting hydrocarbon fuels into pure hydrogen. The system is based on an autothermal reforming (ATR) reactor operating at elevated pressures followed by membrane-based hydrogen separation. The high-pressure membrane discharge stream is combusted and expanded through a turbine generating additional power. Process simulation modeling illustrates the effect of pressure and other operating parameters on system performance and demonstrates a system reforming efficiency approaching 80%. When coupled with a PEM fuel cell and an electrical generator, fuel to electricity efficiency is above 40%. Other anticipated benefits of the system include compact size, simplicity in control and fast start up.  相似文献   

11.
One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. In a membrane reactor process, the thermal energy needed for the endothermic hydrocarbon reforming may be provided by combustion of the membrane reject gas. The energy efficiency of the overall hydrogen generation is maximized by controlling the hydrogen product yield such that the heat value of the membrane reject gas is sufficient to provide all of the heat necessary for the integrated process. Optimization of the system temperature, pressure and operating parameters such as net hydrogen recovery is necessary to realize an efficient integrated membrane reformer suitable for compact portable hydrogen generation. This paper presents results of theoretical model simulations of the integrated membrane reformer concept elucidating the effect of operating parameters on the extent of fuel conversion to hydrogen and hydrogen product yield. Model simulations indicate that the net possible hydrogen product yield is strongly influenced by the efficiency of heat recovery from the combustion of membrane reject gas and from the hot exhaust gases. When butane is used as a fuel, a net hydrogen recovery of 68% of that stoichiometrically possible may be achieved with membrane reformer operation at 600 °C (873 K) temperature and 100 psig (0.791 MPa) pressure provided 90% of available combustion and exhaust gas heat is recovered. Operation at a greater pressure or temperature provides a marginal improvement in the performance whereas operation at a significantly lower temperature or pressure will not be able to achieve the optimal hydrogen yield. Slightly higher, up to 76%, net hydrogen recovery is possible when methanol is used as a fuel due to the lower heat requirement for methanol reforming reaction, with membrane reformer operation at 600 °C (873 K) temperature and 150 psig (1.136 MPa) pressure provided 90% of available combustion and exhaust gas heat is recovered.  相似文献   

12.
Methanol steam reforming (MSR) has been regarded as a promising hydrogen supply method for proton exchange membrane fuel cell (PEMFC), while the efficiency for hydrogen production and integration method of MSR with PEMFC are two major challenges for commercial applications. Here, we present a highly efficient MSR system for hydrogen production and supply for low temperature PEMFC (LT-PEMFC). The MSR system has a highly compact microreactor, wherein MSR, methanol combustion, and CO selective methanation reactions occur. The CO selective methanation is used to reduce the content of CO concentration to remit the CO poison, then the reformate of MSR system is mixed with air and supply for the LT-PEMFC. Then, experimental tests are conducted to investigate the effects of operating parameters on hydrogen production. A staged supply strategy is proposed, it enables to startup the system within 11.2 min and with methanol consumption of 34.72 g. Results show that the methanol conversion can reach up to 93.0% and system's energy efficiency of 76.2%. After integration with a LT-PEMFC, a maximum 160 W electricity can be generated. The results obtained in this study demonstrated that the developed MSR system can be used to supply hydrogen for LT-PEMFC and able to power mobile device requiring hundreds of watts power consumption.  相似文献   

13.
We present a high-temperature proton exchange membrane fuel cell (HT-PEMFC) system model that accounts for fuel reforming, HT-PEMFC stack, and heat-recovery modules along with heat exchangers and balance of plant (BOP) components. In the model developed for analysis, the reaction kinetics for the fuel reforming processes are considered to accurately capture exhaust gas compositions and reactor temperatures under various operating conditions. The HT-PEMFC stack model is simplified from the three-dimensional HT-PEMFC CFD models developed in our previous studies. In addition, the parasitic power consumption and waste heat release from the various BOP components are calculated based on their heat-capacity curves. An experimental fuel reforming reactor for a 5.0 kWe HT-PEMFC system was tested to experimentally validate the fuel reforming sub model. The model predictions were found to be in good agreement with the experimental data in terms of exhaust gas compositions and bed temperatures. Additionally, the simulation revealed the impacts of the burner air-fuel ratio (AFR) and the steam reforming reactor steam-carbon ratio on the system performance and efficiency. In particular, the combined heat and power efficiency of the system increased up to 78% when the burner AFR was properly adjusted. This study clearly illustrates that an HT-PEMFC system requires a high degree of thermal integration and optimization of the system configuration and operating conditions.  相似文献   

14.
An integrated system for hydrogen production via autothermal steam reforming of methanol and consequent power generation in a polymer electrolyte membrane (PEM) fuel cell has been developed and operated at C.P.E.R.I. The pilot plant comprises an autothermal reforming reactor to produce hydrogen, a preferential oxidation reactor (PROX) to reduce CO concentration below 50 ppm and a PEM fuel cell for power generation.The present paper deals with the study of this system, both from an experimental and a theoretical point of view. The experimental work aims to: (a) examine the effect of the reforming temperature on methanol conversion and on the effluent stream concentration, (b) investigate the effect of reaction temperature and O2/CO ratio on the performance of the PROX reactor, and (c) evaluate the operation of a 10-cell PEM fuel cell, using pure hydrogen and air at three temperature levels. The experimental data are subsequently utilized for the validation of one-dimensional pseudo-homogeneous models that have been developed for the two reactors and also for the identification of the voltage–current characteristic curve of the PEM fuel cell. The validated models are then used to investigate the behavior and explore the interactions, both static and dynamic, among the various process subsystems.  相似文献   

15.
《Journal of power sources》2006,160(1):505-509
KIER has been developing a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. For the effective design of a compact hydrogen production system, each unit process for steam reforming and water gas shift, has a steam generator and internal heat exchangers which are thermally and physically integrated into a single packaged hardware system. The newly designed fuel processor (prototype II) showed a thermal efficiency of 78% as a HHV basis with methane conversion of 89%. The preferential oxidation unit with two staged cascade reactors, reduces, the CO concentration to below 10 ppm without complicated temperature control hardware, which is the prerequisite CO limit for the PEMFC stack. After we achieve the initial performance of the fuel processor, partial load operation was carried out to test the performance and reliability of the fuel processor at various loads. The stability of the fuel processor was also demonstrated for three successive days with a stable composition of product gas and thermal efficiency. The CO concentration remained below 10 ppm during the test period and confirmed the stable performance of the two-stage PrOx reactors.  相似文献   

16.
Recently, hydrogen energy technologies attract attention as power systems. To develop hydrogen energy systems, hydrogen storage methods with high storage density and good safety are required. Liquid organic hydrogen carrier (LOHC) is one of the novel hydrogen storage technologies. LOHC has advantages of high storage density, good safety, and easy handling. In this study, a polymer electrolyte membrane fuel cell (PEMFC) stack is operated with hydrogen released from LOHC to evaluate the feasibility of the connected operation of the PEMFC stack and LOHC dehydrogenation reactor. Dibenzyltoluene (H0-DBT) is used as a LOHC material, and the dehydrogenation of perhydro dibenzyltoluene (H18-DBT) is conducted at 240–300 °C. Released hydrogen is purified by adsorbent of activated carbon to remove impurities. However, 100–1400 ppm of methane is observed after the purification, and the PEMFC stack power is reduced from 39.4 W to 39.0 W during the operation by hydrogen dilution and physical adsorption of methane. Then, to evaluate the irreversible damage, pure hydrogen was supplied to the PEMFC stack. The stack power is recovered to 39.4 W. It is concluded that the connected operation of the LOHC dehydrogenation reactor and PEMFC stack is feasible, and the activated carbon adsorbent can be a cost-effective purification method for LOHC.  相似文献   

17.
A control oriented electrochemical static model of a proton exchange membrane fuel cell (PEMFC) stack is developed in this paper. Even though its validation is performed on a specific 7-cell PEMFC stack fed by humidified air and pure hydrogen, the methodology and fit parameters can be applied to different fuel cell systems with minor changes. The fuel cell model was developed combining theoretical considerations and semi-empirical analysis based on the experimental data. The proposed model can be successfully included into a larger dynamic subsystem to complete the power generation system.  相似文献   

18.
We have investigated the concept of an integrated system for small, manportable power units. The focus of this study is the direct thermal coupling of a methanol steam reformer (MSR) and a high-temperature proton exchange membrane fuel cell (HT PEMFC) stack. A recently developed low-temperature (LT) MSR catalyst (CuZnGaOx) was synthesized and tested in a designed reforming reactor. The experimental data show that at 200 °C the complete conversion of methanol is achievable with a hydrogen yield of 45 cm3 min?1 gCAT?1. An experimental setup for measuring the characteristics of the integrated system was designed and used to measure the characteristics of the two-cell HT PEMFC stack. The obtained kinetic parameters and the HT PEMFC stack characteristics were used in the modeling of the integrated system. The simulations confirmed that the integrated LT MSR/HT PEMFC stack system, which also includes a vaporizer, can achieve a thermally self-sustained working point. The base-case scenario, established on experimental data, predicts a power output of 8.5 W, a methanol conversion of 98.5%, and a gross electrical efficiency (based on the HHV) of the system equal to 21.7%. However, by implementing certain measures, the power output and the electrical efficiency can readily be raised to 11.1 W and 35.5%, respectively.  相似文献   

19.
A novel proton exchange membrane fuel cell (PEMFC) system that employs a turbocharger to reuse waste energy is proposed. This study is focused on optimal placement of the PEMFC turbocharger, using either the hydrogen feed stream or the stack outlet as the motive force. A one-dimensional isothermal two-phase model for a PEMFC and an isenthalpic model for the turbocharger are developed for system analysis. To find a better energy source, the system efficiency, power generation, and interaction with the balance of plant (BOP) are considered. To evaluate the feasibility of both systems, an exergy analysis is also performed. The results show that the system efficiency is higher when the turbocharger is installed after the hydrogen tank and that the amount of power generation is also larger when the turbocharger is located in the stack outlet. For the exergy analysis, the case for the turbocharger installed after the hydrogen tank shows higher performance. Therefore, it is preferable to install the turbocharger after the hydrogen tank.  相似文献   

20.
A micro-combined cooling heating and power (CCHP) system integrated with geothermal-assisted methanol reforming and incorporating a proton exchange membrane fuel cell (PEMFC) stack is presented. The novel CCHP system consists of a geothermal-based methanol steam reforming subsystem, PEMFC, micro gas turbine and lithium bromide (LiBr) absorption chiller. Geothermal energy is used as a heat source to drive methanol steam reforming to produce hydrogen. The unreacted methanol and hydrogen are efficiently utilized via the gas turbine and PEMFC to generate electricity, respectively. For thermodynamic and economic analysis, the effects of the thermodynamic parameters (geothermal temperature and molar ratio of water to methanol) and economic factors (such as methanol price, hydrogen price and service life) on the proposed system performance are investigated. The results indicate that the ExUF (exergy utilization factor the exergy utilization factor), TPES (trigeneration primary energy saving) and energy efficiency of the novel system can be reached at 8.8%, 47.24% and 66.3%, respectively; the levelized cost of energy is 0.0422 $/kWh, and the annual total cost saving ratio can be reached at 20.9%, compared with the conventional system. The novel system achieves thermodynamic and economic potential, and provides an alternative and promising way for efficiently utilizing abundant geothermal energy and methanol resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号