首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Thin solid films》1986,137(2):207-214
Conducting transparent films of indium tin oxide were deposited by 100 eV oxygen-ion-assisted deposition. A refractive index of 2.13 at 550 nm was obtained for films deposited onto ambient temperature substrates. The refractive index decreased with increasing substrate temperature to a value of 2.0 at 400°C. The sheet resistance of films 135 nm thick decreased from 800 Ω/□ for layers deposited onto room temperature substrates to around 25 Ω/□ at 400°C. Structural studies revealed that ion-assisted deposition onto ambient temperature substrates produced amorphous films, and that at temperatures above 100°C the films exhibit In2O3 crystallinity. In addition, it was found that the number of voids in the ion-bombarded films was reduced relative to that in films produced by conventional reactive evaporation.  相似文献   

2.
Well-crystallized tin oxide films were successfully synthesized without additional heating by inductively coupled plasma assisted chemical vapor deposition (ICP-CVD). The degree of crystallization was affected by the ICP power and hydrogen flow rate. The substrate temperature was increased only up to 423-453 K by plasma heating, which suggests that the formation of the SnO2 crystals was not caused by plasma heating, but by enhanced reactivity of precursors in high density plasma. The micro-hardness of deposited tin oxide films ranged from 5.5 to 11 GPa at different hydrogen flow rates.  相似文献   

3.
Thin indium tin oxide (ITO) films have been grown on quartz glass substrates by pulsed laser deposition. The influence of ablation target composition and deposition conditions on the growth rate, optical transmission spectra, and carrier mobility and concentration of the films has been examined. The average surface roughness of the ITO films grown at substrate temperatures above 300°C is 2 nm. The films grown at an oxygen partial pressure of 5 mTorr using ablation targets with Sn/(In + Sn) = 5% possess high transmission (85-95%) in the visible range and low resistivity (1.8 × 10−4 Ω cm).  相似文献   

4.
Transparent and heat-reflecting indium tin oxide films were prepared by electron beam evaporation of In2O39mol.%SnO2 in an oxygen atmosphere of about 5×10?4 Torr. A visible absorption of less than 2%, a thermal IR reflectance exceeding 90% and a d.c. resistivity of approximately 3×10?4 Ω cm were obtained from films 0.4 μm thick deposited at a substrate temperature of 300°C. Films with similar properties could be prepared with substrate temperatures as low as 150°C.  相似文献   

5.
Tin doped indium oxide (ITO) has been directly deposited onto a variety of flexible materials by a reactive sputtering technique that utilises a remotely generated, high density plasma. This technique, known as high target utilisation sputtering (HiTUS), allows for the high rate deposition of good quality ITO films onto polymeric materials with no substrate heating or post deposition annealing. Coatings with a resistivity of 3.8 × 10− 4 Ωcm and an average visible transmission of greater than 90% have been deposited onto PEN and PET substrate materials at a deposition rate of 70 nm/min. The electrical and optical properties are retained when the coatings are flexed through a 1.0 cm bend radius, making them of interest for flexible display applications.  相似文献   

6.
Transparent conductive oxide tungsten-doped tin oxide thin films were deposited on glass substrates from ceramic targets by the pulsed plasma deposition method. The structural, electrical and optical properties have been investigated as functions of tungsten doping content and oxygen partial pressure. The lowest resistivity of 2.1 × 10? 3 Ω?cm was reproducibly obtained, with carrier mobility of 30 cm2V? 1s? 1 and carrier concentration of 9.6 × 1019 cm? 3 at the oxygen partial pressure of 1.8 Pa. The average optical transmission was in excess of 80% in the visible region from 400 to 700 nm, with the optical band gap ranging from 3.91 to 4.02 eV.  相似文献   

7.
We investigated the effects of various surface treatments on the work function and chemical composition of an indium tin oxide (ITO) surface. Ultraviolet photoelectron spectroscopy (UPS) was used to measure the work function of ITO. X-ray photoelectron spectroscopy (XPS) was used to study the electron structures of ITO surface. We performed surface treatments on ITO using O2 plasma and HCl solution. Our UPS/XPS analysis indicates increases in the work functions by O2 plasma treatments. It is known that the Fermi energy level is controlled by the donor concentration, and thus the Fermi energy level is shifted toward the valence band minimum.  相似文献   

8.
9.
Pulsed laser deposition was used to deposit high-quality indium tin oxide (ITO) thin solid films on polyethylene napthalate (PEN) flexible display substrates. The electrical, optical, microstructural, mechanical and adhesive properties of the functional thin layer were investigated as a function of a narrow range of background oxygen gas pressure at room temperature, which is the most desirable thermal condition for growing transparent conducting oxides on flexible display polymer substrates. ITO films (240 ± 35 nm thick) deposited on PEN at room temperature in the range of 0.33 to 2.66 Pa background oxygen pressure are observed to exhibit low electrical resistivity (~ 10− 4 Ω cm) and high optical transmission (~ 90%). Electromechanical uniaxial tensile testing, of the hybrid thin structures, results in crack onset nominal strains of around 2%. The ITO surface adhesion reaches a maximum at 1.33 Pa deposition pressure.  相似文献   

10.
Indium oxide films with an electrical resistivity of about 4 × 10?4 Ω cm and good optical quality were prepared by the reactive evaporation of pure indium in the presence of 10?4 Torr of oxygen. The Auger electron spectrum of these films shows a deficiency of oxygen and corresponds to a composition which can be represented as In2O2.85. In the absence of foreign doping agents, the conduction electrons are provided by indium atoms which are adjacent to oxygen vacancies and act as a donor level. The electrical conductivity of the films is shown to be modulated by variations in the partial pressure of oxygen over the film which change the extent of the non-stoichiometry of the oxide by incorporation of oxygen into or extraction of oxygen from the film.  相似文献   

11.
Indium tin oxide (ITO) thin films were deposited on glass substrates by ion beam sputter deposition method in three different deposition conditions [(i) oxygen (O2) flow rate varied from 0.05 to 0.20 sccm at a fixed argon (1.65 sccm) flow rate, (ii) Ar flow rate changed from 1.00 to 1.65 sccm at a fixed O2 (0.05 sccm) flow rate, and (iii) the variable parameter was the deposition time at fixed Ar (1.65 sccm) and O2 (0.05 sccm) flow rates]. (i) The X-ray diffraction (XRD) patterns show that the ITO films have a preferred orientation along (400) plane; the orientation of ITO film changes from (400) to (222) direction as the O2 flow rate is increased from 0.05 to 0.20 sccm. The optical transmittance in the visible region increases with increasing O2 flow rate. The sheet resistance (Rs) of ITO films also increases with increasing O2 flow rate; it is attributed to the decrease of oxygen vacancies in the ITO film. (ii) The XRD patterns show that the ITO film has a strong preferred orientation along (222) direction. The optical transmittance in the visible spectral region increases with an increase in Ar flow rate. The Rs of ITO films increases with increasing Ar flow rate; it is attributed to the decrease of grain size in the films. (iii) A change in the preferred orientations of ITO films from (400) to (222) was observed with increasing film thickness from 314 to 661 nm. The optical transmittance in the visible spectral region increases after annealing at 200 °C. The Rs of ITO film decreases with the increase of film thickness.  相似文献   

12.
The optical, electrical and mechanical properties of indium tin oxide (ITO) films prepared on polyethylene terephthalate (PET) substrates by ion beam assisted deposition at room temperature were investigated. The properties of ITO films can be improved by introducing a buffer layer of silicon dioxide (SiO2) between the ITO film and the PET substrate. ITO films deposited on SiO2-coated PET have better crystallinity, lower electrical resistivity, and improved resistance stability under bending than those deposited on bare PET. The average transmittance and the resistivity of ITO films deposited on SiO2-coated PET are 85% and 0.90 × 10− 3 Ω cm, respectively, and when the films are bent, the resistance remains almost constant until a bending radius of 1 cm and it increases slowly under a given bending radius with an increase of the bending cycles. The improved resistance stability of ITO films deposited on SiO2-coated PET is mainly attributed to the perfect adhesion of ITO films induced by the SiO2 buffer layer.  相似文献   

13.
14.
Methods are described for etching patterns in conducting indium-tin oxide films on glass substrates. For patterns requiring maximum definition and resolution hydriodic acid is preferred, whereas hydrofluoric acid or zinc and hydrochloric acid are useful for other purposes.  相似文献   

15.
The annealing effects of reactively evaporated indium oxide films in various ambients at temperatures of up to approximately 350°C are reported. It is concluded that the changes in the electrical parameters of the films are due to the chemisorption or desorption of oxygen atoms from the grain boundaries. From these studies the grain boundary barrier heights are found to be 26 meV and 43 meV for as-deposited and air-annealed films respectively.  相似文献   

16.
Jung Kyun Kim 《Thin solid films》2009,517(17):5084-5086
We have fabricated Eu-doped indium tin oxide thin films via the conventional sol-gel technique, and confirmed that the doped Eu atoms were chemically incorporated into the indium tin oxide lattice by substituting the In sites. Optical spectra indicated that the Eu-doped films were free of any impurities leading to additional vibrational effects. Valence states of Eu ions in our Eu-doped indium tin oxide films were discussed in connection with Eu concentration.  相似文献   

17.
We report the deposition of indium tin oxide (ITO) by atmospheric pressure chemical vapour deposition (APCVD). This process is potentially scalable for high throughput, large area production. We utilised a previously unreported precursor combination; dimethylindium acetylacetonate, [Me2In(acac)] and monobutyltintrichloride, MBTC.[Me2In(acac)] is a volatile solid. It is more stable and easier to handle than traditional indium oxide precursors such as pyrophoric trialkylindium compounds. Monobutyltintrichloride (MBTC) is also easily handled and can be readily vaporised. It is compatible with the process conditions required for using [Me2In(acac)].Cubic ITO was deposited at a substrate temperature of 550 °C with growth rates exceeding 15 nm/s and growth efficiencies of between 20 and 30%. Resistivity was 3.5 × 10− 4 Ω cm and transmission for a 200 nm film was > 85% with less than 2% haze.  相似文献   

18.
Indium tin oxide (ITO) films have been deposited by reactive d.c.-sputtering and also by the reactive thermal evaporation technique onto glass substrates. The relationship between the microstructure and composition of the ITO films was found to strongly depend on the deposition technique. In addition the application of pure water vapour as the reactive sputtering atmosphere and its influence on the structural and compositional properties of the ITO films has been studied.X-ray diffraction investigations showed that all the films exhibited the bixbite structure of In2O3. No other crystalline phases were observed. Highly crystallized ITO films have been obtained using the reactive thermal evaporation technique. These films show a large average grain size of about 80 nm and a very homogeneous morphology. In contrast the d.c.-sputtered ITO films have a smaller average grain size and a characteristic texture. All deposited ITO films show an enlarged lattice constant compared to that of In2O3. A strong dependence of the chemical composition of the ITO films on the deposition technique and parameters was detected.  相似文献   

19.
Indium tin oxide (ITO) films with a smooth surface (root-mean-square roughness; Rrms=0.40 nm) were made using a combination of the deposition conditions in the ion beam-sputtering method. Sheet resistance was 13.8 Ω/sq for a 150-nm-thick film grown at 150 °C. Oxygen was fed into the growth chamber during film growth up to 15 nm, after which, the oxygen was turned off throughout the rest of the deposition. The surface of the films became smooth with the addition of ambient oxygen but electrical resistance increased. In films grown at 150 °C with no oxygen present, a rough surface (Rrms=2.1 nm) and low sheet resistance (14.4 Ω/sq) were observed. A flat surface (Rrms=0.5 nm) with high sheet resistance (41 Ω/sq) was obtained in the films grown with ambient oxygen throughout the film growth. Surface morphology and microstructure of the films were determined by the deposition conditions at the beginning of the growth. Therefore, fabrication of ITO films with a smooth surface and high electrical conductivity was possible by combining experimental conditions.  相似文献   

20.
Indium tin oxide (ITO) thin films with well-controlled layer thickness were produced by dip-coating method. The ITO was synthesized by a sol-gel technique involving the use of aqueous InCl3, SnCl4 and NH3 solutions. To obtain stable sols for thin film preparation, as-prepared Sn-doped indium hydroxide was dialyzed, aged, and dispersed in ethanol. Polyvinylpyrrolidone (PVP) was applied to enhance the stability of the resulting ethanolic sols. The transparent, conductive ITO films on glass substrates were characterized by X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy. The ITO layer thickness increased linearly during the dipping cycles, which permits excellent controllability of the film thickness in the range ~ 40-1160 nm. After calcination at 550 °C, the initial indium tin hydroxide films were transformed completely to nanocrystalline ITO with cubic and rhombohedral structure. The effects of PVP on the optical, morphological and electrical properties of ITO are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号