首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
VT14 titanium alloy (Ti–4.5Al–3Mo–1V) was subjected to a series of heat treatments consisting of solutionizing for 1 h at the selected temperatures in range of 923–1323 K at an interval of 50 K, followed by water quenching. Hardness and optical microscopy results are correlated with ultrasonic longitudinal and shear wave velocities and attenuation in these specimens. Ultrasonic velocities and hardness decrease with solution annealing temperature (SAT) in the 923–1123 K range. Beyond 1123 up to 1223 K, they increase slightly. Beyond 1223 K, ultrasonic velocities become constant, whereas hardness increases up to 1323 K. Ultrasonic attenuation exhibits an opposite behavior to velocity and hardness. Further, for the first time, authors have shown that ultrasonic velocity can be used to identify the β-transus temperature in this alloy. Because of non-monotonous variation of velocity and attenuation with solutionizing temperature, it was not possible to identify the SAT using any one of these parameters. Hence, a new parameter, ratio of normalized differential of ultrasonic attenuation to normalized differential of ultrasonic velocity (RNDAV) has been used, which is found to increase monotonously with SAT and hence enabling unambiguous characterization of SAT in solution annealed VT14 alloy.  相似文献   

2.
The age-hardening kinetics of powder metallurgy processed Al–Cu–Mg alloy and composites with 5, 15 or 25 vol.% SiC reinforcements, subjected to solution treatment at 495 °C for 0.5 h or at 504 °C for 4 h followed by aging at 191 °C, have been studied. The Al–SiC interfaces in composites show undissolved, coarse intermetallic precipitates rich in Cu, Fe, and Mg, with its extent varying with processing conditions. Examination of aging kinetics indicates that the peak-age hardness values are higher, and the time taken for peak aging is an hour longer on solutionizing at 504 °C for 4 h, due to greater solute dissolution. Contrary to the accepted view, the composites have taken longer time to peak-age than the alloy, probably due to lower vacancy concentration, large-scale interfacial segregation of alloying elements, and inadequate density of dislocations in matrix. The composite with 5 vol.% SiC with the lowest inter-particle spacing has shown the highest hardness.  相似文献   

3.
Microstructural and mechanical property characteristics were investigated for three boride-dispersed composites fabricated by hot-pressing amorphous Ni60Mo30B10 powder. The first composite was tested in the as-hot-pressed condition (HP) whilst the other specimens were subjected to a solution treatment (ST) and further ageing (STA). X-ray diffraction showed the HP and ST composites to consist of Mo2NiB2 particles in a Ni-rich matrix whilst the STA material contained Mo2NiB2 particles in a NiB3Mo matrix. The hardness and fracture toughness decreased and increased, respectively, for the ST material compared to the HP case whilst the STA case showed increased and decreased hardness and fracture toughness, respectively, compared to the ST composite. These results were explained in terms of the brittle–ductile–brittle fracture modes for the HP–ST–STA specimens. In addition, the HP specimen showed only a 15% decrease in compressive strength at 973 K compared to 303 K.  相似文献   

4.
A study has been made of the structure and properties of in-house fabricated, unidirectionally reinforced polyacrylonitrile (PAN) fibre-phenolic plus furfuryl alcohol matrix carbon/carbon (C/C) composites comprising surface-treated (ST) as well as non-surface-treated (NST) carbon fibres. The composites are subjected to a final heat treatment of 1000 or 2000°C. Mechanical properties of the composites were found to be sensitive to the process parameters (particularly the final heat-treatment temperature) as well as fibre surface condition (ST or NST). For the composites comprising ST fibres, flexural strength and modulus of those heat treated at 2000°C were higher than those treated at 1000°C. For the composites comprising NST fibres, the results were the opposite. At the carbon fibre-reinforced plastic (CFRP) stage, strength and modulus of ST fibre composites were higher than those of NST composites by 400% and 100%, respectively, due to the stronger fibre-resin bonding in the ST composite. After the first carbonization treatment, the ST composites always possessed higher strength and modulus values than NST composites, whether the final heat treatment temperature was 1000 or 2000°C. In the ST series of composites, the improvement in strength and modulus became significant from the third densification cycle, while in the NST series, both second and third cycles were effective. Microstructure, particularly fibre-matrix interface morphology, has been studied using polarized light microscopy, scanning electron microscopy, and transmission electron microscopy, to help interpret the process-structure-property relationships.  相似文献   

5.
A356/45vol.%SiCp composites with a uniform distribution of SiC particles have been fabricated by a liquid pressing method. Increasing the melt temperature, holding time and pre-treatment of SiCp by thermal oxidation improves the soundness of composites for the liquid pressing method. The sound composites exhibited low coefficient of thermal expansion (8 ppm/K) and high thermal conductivity (155 W/m K). The measured values for coefficient of thermal expansion agree well with the predicted values based on Turner’s model irrespective of porosity. The measured values for thermal conductivity decrease with porosity, and the effect of pore on the thermal conductivity has been evaluated based on the modified Hasselman–Johnson model.  相似文献   

6.
With numerous reinforcements, aluminum and its alloys are finding growing applications in every sector of industry. Titanium carbide (TiC) is regarded as an outstanding reinforcing material as compared to widely used carbide particles because of its excellent physical and mechanical characteristics, as well as its especially good interfacial bonding (wetting) capacity with aluminum. In the present research work, the effect of the mixing time of the matrix and reinforcement powders has been investigated on the crystallite size and lattice strain of the AA7075–5 wt.% TiC composites. The mechanical properties of the developed composites were also investigated in terms of microhardness values. X-ray diffraction and scanning electron microscopy (SEM), transmission electron microscopy (TEM), particles size distribution analysis and x-ray energy dispersive spectroscopy (EDS) of the synthesized powder samples were done to see the effect of mixing time on their microstructures. The increase in mixing time led to a homogeneous distribution of 5 wt.% of TiC particles, a decrease in particles clustering. The considerable grain refining was confirmed, which reflected a reduction in particle size originating from a prolonged mixing time. The significant improvement in the crystallite size and microhardness of the produced composites were achieved with increasing mixing time.  相似文献   

7.
A substantial improvement in the performance of pyroelectric 0-3 composites of ceramic particles in a polymer matrix has been achieved by doping the polymer matrix material. Readily prepared and polarized films with various volume fractions of lead zirconate-titanate (PZT) particles in polyurethane have been doped in a solution of lithium perchlorate in acetone to increase the conductivity. With an appropriate conductivity, the dielectric permittivities of the ceramic particles and the polymer matrix become matched, resulting in an improvement of the pyroelectric coefficient from about 6 microC/(m(2)K) to about 50 microC/(m(2)K). The experimental results are explained by theoretical predictions.  相似文献   

8.
Transparent crack-free lithiated sol-gel scintillating monoliths were developed by taking advantage of a sealed container system for a syneresis and the pi-pi interactions between sol-gel components and organic fluors to yield a better homogeneity and scintillating efficiency. The transparency of the resulting materials indicates that the new scintillating material composites are mesoscopically dispersed. The silica monolith can be prepared without cladding the monolith with an engineering plastic such as a poly(ether ether ketone) (PEEK) or a liquid mounting medium. A successful detection of neutron particles by using these lithiated scintillating monoliths was demonstrated.  相似文献   

9.
Thermally conducting aluminum nitride polymer-matrix composites   总被引:22,自引:0,他引:22  
Thermally conducting, but electrically insulating, polymer-matrix composites that exhibit low values of the dielectric constant and the coefficient of thermal expansion (CTE) are needed for electronic packaging. For developing such composites, this work used aluminum nitride whiskers (and/or particles) and/or silicon carbide whiskers as fillers(s) and polyvinylidene fluoride (PVDF) or epoxy as matrix. The highest thermal conductivity of 11.5 W/(m K) was attained by using PVDF, AlN whiskers and AlN particles (7 μm), such that the total filler volume fraction was 60% and the AlN whisker–particle ratio was 1:25.7. When AlN particles were used as the sole filler, the thermal conductivity was highest for the largest AlN particle size (115 μm), but the porosity increased with increasing AlN particle size. The thermal conductivity of AlN particle epoxy-matrix composite was increased by up to 97% by silane surface treatment of the particles prior to composite fabrication. The increase in thermal conductivity is due to decrease in the filler–matrix thermal contact resistance through the improvement of the interface between matrix and particles. At 60 vol.% silane-treated AlN particles only, the thermal conductivity of epoxy-matrix composite reached 11.0 W/(m K). The dielectric constant was quite high (up to 10 at 2 MHz) for the PVDF composites. The change of the filler from AlN to SiC greatly increased the dielectric constant. Combined use of whiskers and particles in an appropriate ratio gave composites with higher thermal conductivity and low CTE than the use of whiskers alone or particles alone. However, AlN addition caused the tensile strength, modulus and ductility to decrease from the values of the neat polymer, and caused degradation after water immersion.  相似文献   

10.
The effect of different solution temperatures has been investigated on the microstructure and tensile properties of in situ Al–Mg2Si composite specimens were subjected to solutionizing at different temperatures of 300 °C, 350 °C, 400 °C, 450 °C, 500 °C, 550 °C and 580 °C for holding time of 4 h followed by quenching. The microstructural studies of the polished and etched samples by scanning electron microscopy (SEM) in the solution condition indicated that the increase in the temperature changes the morphology of both the primary and secondary Mg2Si phases. Solutionizing led to the dissolution of the Mg2Si particles and changed their morphology. Tensile test results indicated that ultimate tensile strength (UTS) gradually decreased upon solutionizing from 300 to 550 °C while further increase in the temperature followed by a sharp decrease in UTS up to 580 °C solutionizing temperature. It was found that the elongation has become three times greater in comparison to the as-cast state. Elongation results showed an increase up to 500 °C and then reduced temperatures of 550 and 580 °C. Fractographic analysis revealed a cellular nature for the fracture surface. On the cellular fracture surface, the features of both brittle and ductile fracture were present simultaneously. As a result of solution treatment the potential sites for stress concentration and crack initiation areas were reduced due to softening of the sharp corners and break up of eutectic network respectively, while increase in the number of fine dimples rendered the nature of fracture to ductile and also increased elongation.  相似文献   

11.
采用冷压烧结工艺制备聚四氟乙烯(PTFE)/纳米CaCO3复合材料,并研究了其性能。实验结果表明,通过差示扫描量热(DSC)分析,少量纳米CaCO3对PTFE结晶度有一定程度提高,起到异向成核作用;复合材料的结晶速率随结晶温度的升高而降低;相同的结晶温度下,复合材料的半结晶时间t1/2和最大结晶时间tmax高于纯PTF...  相似文献   

12.
Abstract

A liquid phase technique (casting) has been successfully employed for the production of Ti/TiC in situ metal matrix composites. The γ-TiC phase produced by this process is highly substoichiometric. Changes in chemistry of the TiC phase in these composites are noted during annealing at elevated temperatures. The degree of stoichiometry of TiC increases during annealing at 1050°C and further during post-annealing aging at 750°C. This increase in the degree of stoichiometry (C/Ti atomic ratio) is accompanied by lattice expansion and reduction in microhardness values of the TiC particles. The change in TiC stoichiometry is accompanied by the precipitation of soft Ti particles within the TiC phase. The results are compared with those obtained from composites fabricated by a powder metallurgy route where the carbide chemistry is insensitive to heat treatment.  相似文献   

13.
A hybrid material of polyaniline protonated with hydrochloric acid and conductive graphene nanosheets (PANi/GNs) has been prepared by an in situ chemical polymerization method. The interactions between PANi and GNs in the hybrid composites are investigated by utilizing XRD, FT-IR, UV–vis and Raman. It is found that the PANi are adsorbed on the surface of the GNs, and the morphology of PANi transforms from twist structure to extended structure after the GNs are introduced. The thermoelectric (TE) properties of PANi/GNs composites have been investigated in the range from 323 K to 453 K. The electrical conductivity and the Seebeck coefficient of PANi/GNs composites are obviously higher than those of the PANi, while the thermal conductivity of the composites still keeps relatively low values even with high GNs content, resulting in the increase in dimensionless figure of merit (ZT). A highest ZT value of 1.95 × 10−3 has been obtained for the composite containing 30 wt % GNs at 453 K, which is about 70 times higher than that obtained from the PANi.  相似文献   

14.
Nanohydroxyapatite reinforced poly(vinyl alcohol) gel (nano-HA/PVA gel) composites has been proposed as an articular cartilage repair biomaterial. In this paper, nano-HA/PVA gel composites were prepared by in situ synthesis nano-HA particles in PVA solution and accompanied with freeze/thaw method. The influence of nano-HA content, PVA concentration, test frequency and freeze/thaw cycle times on the viscoelastic behavior of nano-HA/PVA gel composites were evaluated using dynamic mechanical thermal analysis (DMTA). The results showed that both storage modulus and loss modulus firstly increased and then presented decreasing trend with the rise of nano-HA content. Their maximum values were obtained while nano-HA content was 6%. Furthermore, the G′ and G″ of the composites improve with the increase of PVA concentrations and freeze/thaw cycle times. This effect was more distinct at low freeze/thaw cycles. The phase angle (tan δ) of the pure PVA gel is larger than that of the nano-HA/PVA composites at the test frequency spectra, but all the phase angle values of the tested composites were close to that of nature bone.  相似文献   

15.
Temperature dependence of the fracture toughness of epoxy composites reinforced with nano- and micro-silica particles was evaluated. Epoxy composites containing varied composition ratios ΦSP of spherical nano- and micro-silica particles, 240 nm and 1.56 μm, were prepared at a fixed volume fraction (VP = 0.30). The thermo-viscoelasticity and fracture toughness of the composites and neat epoxy were measured at 143 K, 185 K, 228 K, 296 K, 363 K, and 399 K. Experimental results revealed that fracture toughness strongly depended on the microstructure of nano- and micro-particles bidispersion as well as its interactions with the matrix at all temperature, but depended on toughened matrix due to increase in mobility of matrix at the relaxation temperatures.  相似文献   

16.
In the present paper, we report electrical conductivity and dielectric studies on the composites of conducting polyaniline (PANI) with crystalline semiconducting ZnS powder, wherein PANI has been taken as inclusion and ZnS crystallites as the host matrix. From the studies, it has been observed that the value of room temperature d.c. conductivity of the composites with volume fraction of PANI > 0.65 shows an unusual behaviour wherein, conductivity values of the composites exceed that of PANI itself with maximum value as high as 6 times that of PANI at the volume fraction of 0.85. A similar trend has also been observed for the real and imaginary parts of complex dielectric constant values of the composites. This unusual behaviour in the d.c. conductivity and dielectric properties has been attributed to the enhancement in the degree of crystallinity of PANI as a consequence of its interfacial interaction with ZnS matrix. The results of optical microscopy show coating of PANI all around the ZnS particles. The temperature dependent conductivity studies suggest the quasi one-dimensional VRH conduction in PANI as well as its composites with ZnS. FTIR and XRD studies have also been reported.  相似文献   

17.
The present investigation deals with microstructure and property related changes in a zinc-based alloy induced by varying solutionizing and ageing durations and (solutionizing) temperatures. The influence of partially replacing copper by nickel and silicon in the alloy composition has also been studied on similar lines. The microstructure of the as cast, nickel/silicon-free alloy revealed primary dendrites surrounded by eutectoid and eutectic + in the interdendritic regions along with the metastable phase. The addition of nickel and silicon partially altered the basic microstructure of the alloy by forming primary silicon particles and intermetallic compounds. Solutionizing led to the breaking of the dendritic structure and redistribution of the alloying elements whilst ageing formed the T phase. The morphology of silicon particles and the (nickel containing) intermetallic compound was noted to be unaltered in the nickel and silicon containing alloy during the heat treatment. The hardness of the alloys increased during solutionizing whilst it reduced after ageing when compared with that of the as cast sample value. The presence of silicon and nickel led to an increase in the hardness of the alloy. It also enabled the alloy to retain a higher hardness during the heat treatment. An increased solutionizing duration led to an initial increase in the hardness with a peak value being obtained which was followed by a reduction in the hardness. The presence of nickel and silicon in the alloy reduced the tendency of a reduction in hardness beyond the peak hardness. The microconstituents also lowered the detrimental influence of the coarsening of the T phase. The density of the nickel/silicon-free alloy varied in a narrow range. However within this range, solutionizing caused an increase in the density with duration followed by a reduction and finally a steady state value. The addition of silicon and nickel did not affect the density of the alloy to any great extent. The trend followed by the electrical resistivity was identical to that of hardness. Furthermore, the presence of silicon and nickel increased the resistivity of the alloy. Changes in the properties of the alloys during the heat treatment have been explained on the basis of microstructural alterations caused by the heat treatment.  相似文献   

18.
Thermal analysis is used to establish the relationship between solidification history and the microstructure of SiC particulate reinforced Al-Si alloy-matrix composites. The results show that cooling curves are influenced by the presence of SiC particles and by strontium modification. The eutectic growth temperature of SiCP/359 composites modified with Sr lies in the range of 840 to 843 K, i.e., about 5 to 7 K higher than that of Sr-modified unreinforced 359. For the same composite, the eutectic undercooling is higher with Sr modification than without. The eutectic solidification time of the composites is shorter than that of the unreinforced base alloy because of the presence of the ceramic particles. Strontium modification has the tendency to extend the eutectic solidification time. Microstructure analysis reveals that Sr modification has a refining effect on eutectic silicon for the composites, and SiC particles in the composite melt serve as the substrates for eutectic Si phase nucleation.  相似文献   

19.
The hybrid filler of hollow glass microspheres (HGM) and nitride particles was filled into low-density polyethylene (LDPE) matrix via powder mixing and then hot pressing technology to obtain the composites with higher thermal conductivity as well as lower dielectric constant (Dk) and loss (Df). The effects of surface modification of nitride particles and HGMs as well as volume ratio between them on the thermal conductivity and dielectric properties at 1 MHz of the composites were first investigated. The results indicate that the surface modification of the filler has a beneficial effect on thermal conductivity and dielectric properties of the composites due to the good interfacial adhesion between the filler and matrix. An optimal volume ratio of nitride particles to HGMs of 1:1 is determined on the basis of overall performance of the composites. The thermal conductivity as well as dielectric properties at 1 MHz and microwave frequency of the composites made from surface-modified fillers with the optimal nitride to HGM volume ratio were investigated as a function of the total volume fraction of hybrid filler. It is found that the thermal conductivity increases with filler volume fraction, and it is mainly related to the type of nitride particle other than HGM. The Dk values at 1 MHz and microwave frequency show an increasing trend with filler volume fraction and depend largely on the types of both nitride particles and HGMs. The Df values at 1 MHz or quality factor (Q × f) at microwave frequency show an increasing or decreasing trend with filler volume fraction and also depend on the types of both nitride particle and HGM. Finally, optimal type of HGM and nitride particles as well as corresponding thermal conductivity and dielectric properties is obtained. SEM observations show that the hybrid filler particles are agglomerated around the LDPE matrix particles, and within the agglomerates the smaller-sized nitride particles in the hybrid filler can easily form thermally conductive networks to make the composites with high thermal conductivity. At the same time, the increase of the value Dk of the composites is restricted due to the presence of HGMs.  相似文献   

20.
The effect of the quenching medium and of varying the microstructure on low cycle fatigue behaviour of aluminium alloy RR58 has been investigated at 423K. It is observed that fatigue resistance is significantly impaired if, following solutionizing, the alloy is quenched in water instead of in oil. Thermal as well as thermomechanical treatments were employed to produce different microstructures. The overaged microstructure displayed the highest fatigue life. It is shown with the help of fractographic observations that differences in fatigue resistance due to differences in severity in quenching or in microstructure arise mainly due to the influence of these variables on crack initiation and early crack propagation. It has also been demonstrated that as the rate of hardening or softening is increased, cyclic strength coefficient K′ and fatigue hardening exponent n′ increase; the fatigue ductility coefficient ?f decreases as a result of varying microstructures, and the fatigue resistance at 423K of the alloy is lowered. When compared with the behaviour at ambient temperature, the test temperature of 423K has been found to have no significant effect on the fatigue life/strain plot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号