首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
定常对流扩散反应方程非均匀网格上高精度紧致差分格式   总被引:1,自引:1,他引:0  
本文构造了非均匀网格上求解定常对流扩散反应方程的高精度紧致差分格式.我们首先基于非均匀网格上函数的泰勒级数展开,给出了一阶导数和二阶导数的高阶近似表达式;然后将模型方程变形,借助于对流扩散方程高精度紧致格式构造的方法,结合原模型方程,得到定常对流扩散反应方程的高精度紧致差分格式;最后给出的数值算例验证了本文格式高精度和高分辨率的优点.  相似文献   

2.
本文在非均匀网格上给出了求解非定常对流扩散方程的一种高精度紧致差分格式,特别适合边界层和大梯度等问题的求解.从稳态对流扩散方程入手,首先,基于非均匀网格上的泰勒级数展开对空间导数项进行离散,然后对时间项采用二阶向后欧拉差分公式,从而得到一维非定常对流扩散方程在非均匀网格上的三层全隐式紧致差分格式.新格式在时间具有二阶精度,空间具有三到四阶精度,并且是无条件稳定的.最后,通过数值实验验证了本文格式的精确性,以及在处理诸如边界层和大梯度问题上的优势.  相似文献   

3.
基于中心紧致三对角系数矩阵的四阶、六阶格式,通过非线性组合五阶WENO差分格式大模板和两个对称小模板对网格半节点函数值的插值计算,得到求解双曲守恒律方程的四阶、五阶加权紧致非线性差分格式。线性对流方程的计算结果验证了格式的计算精度和计算效率;一维无粘Burgers方程的计算结果验证了格式分辨率;一、二维欧拉方程的计算结果验证了格式对非线性问题中激波间断的捕捉能力。所有数值实验均表明,构造的新格式是一个高效、高精度、高分辨率的激波捕捉格式。  相似文献   

4.
通过对规正变量进行重构,本文提出了求解对流扩散方程的修正高分辨率组合格式,它能够求解边界层和大梯度等问题.首先,根据规正变量的定义得出了组合格式的通用表达式,然后对时间项采用二阶中心差分格式,得到了对流扩散方程的离散表达式,对离散化得到的代数方程组采用TDMA算法求解,并推导出了组合格式计算过程迭代收敛时所满足的充分条件.数值实验表明:新格式具有分辨率高,数值耗散较低,总偏差量较小,能很好模拟场变量的大梯度变化,计算结果优于传统格式.  相似文献   

5.
对流扩散方程在工程计算中具有广泛应用.本文研究一维变系数对流扩散方程第三边值问题的高精度有限体积方法.通过在控制体积上积分导出了方程的积分守恒形式,然后对积分守恒形式利用泰勒公式和二次埃尔米特插值进行离散得到了紧有限体积格式.该格式导出的线性代数方程组具有三对角性质,因此可使用追赶法求解.进而,通过分析截断误差,采用能量方法证明了格式按照几种标准的离散范数四阶收敛.最后,数值算例验证了格式的正确性和有效性,这与理论分析结果是一致的.  相似文献   

6.
很多实际物理问题都可以由带有不连续波数的变系数 Helmholtz 方程进行数值模拟。Helmholtz 方程的数值方法研究是热点问题之一,具有重要的理论和实际意义。由于波数的不连续性,使用传统的有限差分方法求解带有不连续波数的 Helmholtz 方程时通常无法达到原有差分格式的精度。结合浸入界面方法的思想,对带有不连续波数的二维变系数 Helmholtz 方程构造了一类新的四阶紧致有限差分格式,数值实验验证了新方法的可靠性和有效性。  相似文献   

7.
本文建立了一种基于投影法的求解不可压缩Navier-Stokes(N-S)方程的高精度紧致差分格式。该方法时间上采用Kim和Moin二阶投影法离散,空间上采用高精度紧致格式离散,并提出了一种新的离散压力边界的紧致格式,同时对计算结果进行分析以验证该投影法的精度和格式稳定性。文中Taylor涡列数值计算结果表明,Kim和Moin投影法能使得压力场和速度场均达到时间二阶精度,且高精度紧致格式投影法也具有空间高阶精度。驱动方腔数值模拟结果显示,本文对N-S方程的离散格式具有很好的可靠性,适用于对复杂流体流动的小尺度问题的数值模拟和研究。  相似文献   

8.
对流占优扩散方程的改进特征差分算法   总被引:2,自引:0,他引:2  
将特征线方法和有限差分方法相结合,给出了一种求解对流占优扩散方程数值解的新的隐式特征差分格式,并研究了新算法的收敛性,新算法的优点是适应性强,特别适用于变系数方程,数值试验的结果表明在消除数值震荡方面更有效。  相似文献   

9.
兰斌  王涛 《工程数学学报》2020,37(6):719-729
对流扩散方程广泛存在于很多领域,为适应一些实际问题模型的求解,对离散格式,不仅要求满足一些基本性质,如稳定性和解的存在唯一性等,还要求离散格式的保正性.采用有限体积格式求解对流扩散方程的工作较少,但在保正性方面所做的工作不多.本文构造了任意非等距网格上一维对流扩散方程的非线性保正有限体积格式.其中,扩散通量的离散,在等距网格上,当扩散系数为标量时可退化为标准的二阶中心差分格式.而对流通量的离散,为避免数值振荡而使其保持迎风特性,提出一种新的方法使格式精度提高到二阶.该方法在上游单元中心处作泰勒级数展开,通过相关辅助未知量来完成梯度的重构,并对出负情形作正性校正,使得格式满足保正性要求.新格式只含有区间单元中心未知量,并满足区间端点处通量的局部守恒性.数值结果表明,本文所提格式是有效的,对于处理扩散占优、对流占优问题,扩散系数连续和间断情形均具有良好的适应性,并且保持二阶精度.另外,新格式适用于扩散系数间断问题的求解.  相似文献   

10.
双曲扩散方程在数学上是一类重要的偏微分方程,在众多工程领域中有着广泛的应用.其常用于描述声波和电势场中电流的传播问题,也用于模拟计算流体力学中的对流扩散以及热传导模型.本文研究了一类具有耗散项的双曲扩散方程,并通过数值方法对其初边值问题进行求解.针对已有的有限体积法在求解该问题时精度无法提高的问题,本文基于变限积分的方法提出了新的高精度有限体积格式,并利用Fourier分析法得到其离散格式无条件稳定的结论,最后利用数值实验证实了理论分析结果.  相似文献   

11.
The numerical solution of the convection-diffusion equation represents a very important issue in many numerical methods that need some artificial methods to obtain stable and accurate solutions. In this article, a meshless method based on the local Petrov-Galerkin method is applied to solve this equation. The essential boundary condition is enforced by the transformation method, and the MLS method is used for the interpolation schemes. The streamline upwind Petrov-Galerkin (SUPG) scheme is developed to employ on the present meshless method to overcome the influence of false diffusion. In order to validate the stability and accuracy of the present method, the model is used to solve two different cases and the results of the present method are compared with the results of the upwind scheme of the MLPG method and the high order upwind scheme (QUICK) of the finite volume method. The computational results show that fairly accurate solutions can be obtained for high Peclet number and the SUPG scheme can very well eliminate the influence of false diffusion.  相似文献   

12.
A set of two model equations for a multiphase flow is chosen to investigate the influence of approximation formulas. The approximations have been applied to the prediction of Peclet numbers using control volume interface values, as well as for gradient terms occurring as source terms. Use of an exponential approximation for a gradient source term, instead of the conventional central-difference approximation, leads to a remarkable reduction in the number of control volumes required. Different approximation formulas for the predictions of the grid Peclet number are found to have little influence on results. The form of the model equation has also been investigated. The source terms in gradient form in the model have been combined with the convection and diffusion terms to become part of the discretization scheme.  相似文献   

13.
On the basis of the projection method, a higher order compact finite difference algorithm, which possesses a good spatial behavior, is developed for solving the 2D unsteady incompressible Navier–Stokes equations in primitive variable. The present method is established on a staggered grid system and is at least third‐order accurate in space. A third‐order accurate upwind compact difference approximation is used to discretize the non‐linear convective terms, a fourth‐order symmetrical compact difference approximation is used to discretize the viscous terms, and a fourth‐order compact difference approximation on a cell‐centered mesh is used to discretize the first derivatives in the continuity equation. The pressure Poisson equation is approximated using a fourth‐order compact difference scheme constructed currently on the nine‐point 2D stencil. New fourth‐order compact difference schemes for explicit computing of the pressure gradient are also developed on the nine‐point 2D stencil. For the assessment of the effectiveness and accuracy of the method, particularly its spatial behavior, a problem with analytical solution and another one with a steep gradient are numerically solved. Finally, steady and unsteady solutions for the lid‐driven cavity flow are also used to assess the efficiency of this algorithm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
It is shown that the upwind difference scheme of formulating differential expressions, in problems involving transport by simultaneous convection and diffusion, is superior to the central differences scheme, when the local Peclet number of the grid is large. Even better schemes are derived and discussed. It is pointed out that the best finite differences analogues are found by approximating differential expressions as a whole, and that simple (e.g. one-dimensional) exact solutions form a useful, legitimate and independent source of these optimum algebraic formulae.  相似文献   

15.
A high-order finite difference scheme for the fractional Cattaneo equation is investigated. The $L_1$ approximation is invoked for the time fractional part, and a compact difference scheme is applied to approximate the second-order space derivative. The stability and convergence rate are discussed in the maximum norm by the energy method. Numerical examples are provided to verify the effectiveness and accuracy of the proposed difference scheme.  相似文献   

16.
In this paper, a meshless local maximum-entropy finite element method (LME-FEM) is proposed to solve 1D Poisson equation and steady state convection–diffusion problems at various Peclet numbers in both 1D and 2D. By using local maximum-entropy (LME) approximation scheme to construct the element shape functions in the formulation of finite element method (FEM), additional nodes can be introduced within element without any mesh refinement to increase the accuracy of numerical approximation of unknown function, which procedure is similar to conventional p-refinement but without increasing the element connectivity to avoid the high conditioning matrix. The resulted LME-FEM preserves several significant characteristics of conventional FEM such as Kronecker-delta property on element vertices, partition of unity of shape function and exact reproduction of constant and linear functions. Furthermore, according to the essential properties of LME approximation scheme, nodes can be introduced in an arbitrary way and the $C^0$ continuity of the shape function along element edge is kept at the same time. No transition element is needed to connect elements of different orders. The property of arbitrary local refinement makes LME-FEM be a numerical method that can adaptively solve the numerical solutions of various problems where troublesome local mesh refinement is in general necessary to obtain reasonable solutions. Several numerical examples with dramatically varying solutions are presented to test the capability of the current method. The numerical results show that LME-FEM can obtain much better and stable solutions than conventional FEM with linear element.  相似文献   

17.
The aim of this work is to propose a numerical approach based on the local weak formulations and finite difference scheme to solve the two-dimensional fractional-time convection–diffusion–reaction equations. The numerical studies on sensitivity analysis to parameter and convergence analysis show that our approach is stable. Moreover, numerical demonstrations are given to show that the weak-form approach is applicable to a wide range of problems; in particular, a forced-subdiffusion–convection equation previously solved by a strong-form approach with weak convection is considered. It is shown that our approach can obtain comparable simulations not only in weak convection but also in convection dominant cases. The simulations to a subdiffusion–convection–reaction equation are also presented.  相似文献   

18.
Abstract

In this paper, the backward heat conduction problem is solved numerically using the fourth-order compact difference scheme. For regularization of this ill-posed problem, the quasi-reversibility technique is used. Compact finite difference approximation of the second derivative has been compared with the fourth-order standard finite difference approximation via Fourier analysis. The comparison shows that the resolution ability of the compact difference approximation is better than the standard finite difference approximation. The discrete dispersion relation for the compact difference scheme and finite difference scheme is obtained. Two test problems are considered for the numerical experiments. The CPU time taken by a fourth-order compact difference scheme is obtained and compared with the fourth-order standard finite difference scheme which shows that the fourth-order compact difference scheme takes lesser CPU time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号