首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
在深海石油开采中,使用传统的钢制管道作为海底管道和立管,存在耐腐蚀性差、重量大以及柔性小等不足。热塑性玻纤增强柔性管具有重量轻、强度高、柔性好以及耐腐蚀性强等优点,逐步成为海洋管道发展的趋势。针对南海500 m海深油井使用玻纤增强柔性管进行增强层截面结构设计,依据DNVGL-RP-F119规范和美国船级社相关规范,针对柔性管增强层缠绕角度及缠绕层数,依据经验建立±30°~±75°缠绕角度和20层~40层缠绕层数的组合模型。利用ABAQUS有限元软件进行30 MPa内压、60 t拉力和5 MPa外压三种载荷工况下的强度分析,得到满足上述载荷工况的最优缠绕角度为±60°;再进行90MPa爆破压力及拉伸与外压组合工况下的强度校核,最后得到能够满足技术指标要求的增强层最优缠绕角度为±60°和最少缠绕层数为36层。  相似文献   

2.
对玻璃纤维增强复合软管进行短期爆破压力试验,建立内压载荷下玻纤软管有限元模型进行模拟仿真计算,在此基础上,研究提出了玻纤软管爆破压力的理论求解方法。将三者进行对比分析,结果表明:在一定内压作用下,加强层所受到的力远大于内外层,说明了玻纤软管的加强层承担大部分内压载荷;玻纤缠绕角度大于45°且小于80°时,抗内压能力逐渐增强,59°为玻纤软管设计中最优缠绕角度;适当减小管道的径厚比,可以提高管道承受内压的能力。  相似文献   

3.
介绍井下采掘应用的高压注水封孔器的核心部件膨胀管的增强层结构设计,膨胀管由内胶层、4层钢丝缠绕层增强层、中胶层和外胶层构成。膨胀管膨胀变型的依据是钢丝增强层采用非"中性角"缠绕结构,在工作承压后会恢复"中性角"而产生变形;并分析了内径为25 mm的膨胀管的工艺计算过程,验证表明工作压力31.5 MPa时外径达到81 mm满足应用。  相似文献   

4.
以改性双马来酰亚胺(BMI)为基体,高强玻璃纤维为增强体,制备适于固体发动机推力矢量控制系统用增强件复合材料,分析了其与天然橡胶的原位热粘接性能。研究发现,改性BMI树脂的固化是分步进行的,适宜固化制度为130℃/3h+180℃/2h+230℃/3h,固化后材料的玻璃化温度超过250°C。改性BMI/玻纤复合材料的室温拉伸、弯曲强度均在600MPa以上,160°C强度保持率约90%以上。室温压缩、层间剪切强度分别高于300MPa、30MPa,160℃分别下降至250MPa、20MPa。Thinkbond11/26、Thinkbond11/27两种胶粘剂用于改性BMI/玻纤复合材料与天然橡胶界面原位热粘接,界面剪切强度均超过5.8MPa。改性BMI/玻纤复合材料的综合性能均显著优于增强件现用环氧/玻纤复合材料,满足固体火箭发动机柔性喷管矢量控制系统结构件应用需求。  相似文献   

5.
通过力平衡法设计了增强层的钢丝配置,以EN312添加50%和70%的管道料作为粘接树脂,制备了dn315的钢丝缠绕增强聚乙烯复合管(简称钢丝管)。结果表明,EN312添加50%、70%的管道级聚乙烯使用,对钢丝的剪切强度影响不大。2个配方应用于dn315×1.6 MPa钢丝管,管材的剥离强度、爆破压力、20℃、3.2 MPa、1 h静液压、60℃、1.92 MPa、165 h静液压均满足GB/T 32439标准要求。EN312稀释使用表现出良好的抗高低温冲击穿丝能力。  相似文献   

6.
简要叙述了真空袋压成型工艺的原理,并以环氧树脂为基体,玻璃纤维为增强材料,制作了玻璃纤维复合材料(GFRP)。采用万能试验机对试件的抗压性能进行测试,通过改变GFRP试件的厚度与成型压力,考察制件的外观与性能。实验发现试件的成型厚度与压力对其性能有很大影响。在真空负压(0.1MPa),厚度小于25mm时,试件成型较好,层间紧密,空隙率在4%~6%,试件加压未出现裂纹与异响,卸载后试件无塑性变形;当成型压力提高到0.65MPa,试件空隙率降低到1.8%,试件厚度增加到30~40mm,仍具有很好的致密度与抗压性能。  相似文献   

7.
针对纤维增强塑料复合管实物承压性能测试工作量大、成本高以及影响因素不明确等问题,采用有限元模拟分析法研究了复合管生产工艺对承压性能的影响。依据公称直径150 mm、公称压力2.5 MPa涤纶纤维增强塑料复合管的结构及材料特征,采用Halpin-Tsai模型法建立了复合管的有限元模型,研究了纤维铺层数量、纤维缠绕角度以及内衬层壁厚等工艺参数对复合管承压性能的影响。结果表明,采用建立的复合管模型模拟计算的管材爆破压力为11.105 MPa,与实物管材水压爆破值10.75 MPa的相对误差仅为3.302%。增加纤维层的数量、纤维缠绕角度以及内衬层壁厚均可提高复合管的承压性能。综合考虑制造成本和生产效率,分析获得涤纶纤维增强聚乙烯复合管最佳生产工艺参数为纤维铺层数为4层、纤维缠绕角为56°、内衬层最小壁厚为9 mm。  相似文献   

8.
《现代塑料》2009,(12):17-17
中间层采用玻纤增强材料的PP—R3层管可用于替代建筑领域中传统的用于冷热水输送的供暖管和排污管。为满足生产此类管道的一些特殊要求。维也纳机器制造商辛辛那提挤出公司推出了订制化的工程技术方案。  相似文献   

9.
针对国家标准GB/T 32439—2015中钢丝缠绕增强聚乙烯复合管(简称钢丝管)的最大承压为3.5 MPa而不能满足高压领域应用需求的难题,在传统双层钢丝缠绕增强的基础上,创造性的设计了四层钢丝缠绕增强结构,制备了dn(公称外径)110×10 MPa钢丝管,开发了锚固型双密封高压连接接头,系统测试了钢丝管的性能。结果表明:结合锚固型双密封高压连接接头,四层钢丝增强的钢丝管通过了60℃、12 MPa、165 h静液压及60℃、11 MPa、1 000 h静液压测试,钢丝管的爆破测试,压力达到设备最大压力25.1 MPa。  相似文献   

10.
利用Abaqus/Explicit有限元仿真软件建立了管束集装箱Ⅳ型储氢瓶筒体碳纤维增强复合材料(CFRP)层子弹冲击模型,重点探讨了当子弹以不同冲击初始速度穿透均衡CFRP储氢瓶筒体时的纤维缠绕角度与筒体CFRP层抗弹冲击性能的变化规律。结果表明:在模拟条件下,当子弹以250~500 m/s的较低速度冲击储氢瓶筒体时,筒体CFRP层抗弹冲击性能伴随纤维缠绕角度的递增呈现先增强后减弱的趋势,在缠绕角度为±45°左右时的筒体CFRP层抗弹冲击性能最好;当子弹以500~850 m/s的较高速度冲击筒体时,筒体CFRP层抗弹冲击性能同纤维缠绕角度的关系不明显。该研究可为管束集装箱Ⅳ型储氢瓶的抗冲击设计及优化提供参考。  相似文献   

11.
以聚乳酸(PLA)为基体,连续玻璃纤维为增强体,采用熔融浸渍工艺制备连续玻璃纤维预浸丝,将制得的预浸丝作为3D打印耗材用于熔融沉积(FDM)的3D技术来制备连续玻璃纤维增强PLA复合材料试样,并研究了打印温度、层厚和打印速度对复合材料力学性能的影响。结果表明,当打印层厚为0. 5 mm,打印温度为230℃,打印速度为2 mm/s时,连续玻璃纤维增强PLA复合材料的弯曲性能最佳,弯曲强度和弯曲模量分别为327. 84 MPa和20. 293 GPa。综合考虑复合材料的力学性能、表面质量和尺寸稳定性,连续玻璃纤维增强PLA复合材料的最佳打印层厚为0. 5 mm,适宜的打印温度范围为200~220℃,打印速度范围为2~4 mm/s。  相似文献   

12.
FRP管增强混凝土结构的轴压极限强度   总被引:1,自引:0,他引:1  
通过对组合结构轴心受压后期强化阶段力学特征及组分材料相互约束条件的研究,归纳出FRP管与核心混凝土的轴压极限应力预测公式;运用合成法得到FRP管混凝土的轴压极限强度;分析了各设计参数对组合结构轴压极限强度的影响。结果表明,纤维缠绕角与组合结构轴压极限强度之间呈非线性变化状态,且在不同的缠绕角范围内,轴压极限强度的变化趋势不同,组合结构达到强度极值点的纤维最佳缠绕角为72°。而约束管含量比与轴压极限强度之间近似呈正比关系。  相似文献   

13.
根据标准ASTM D2992-12中的方法B研究了纤维缠绕增强复合管材的长期静液压性能,介绍了测试方法的基本原理并对结果进行了分析,分析评价得到复合管材50年长期静液压为14.3 MPa。  相似文献   

14.
李明轩 《中国塑料》2011,25(1):71-75
将16-32规格的搭接焊铝塑管的长期静液压试验曲线外推至50年,通过考虑1个与对接焊铝塑管相同的总体设计系数(C=1.25),证明在T0=95 ℃的长期工作温度下,16-32规格的搭接焊铝塑管与对接焊铝塑管的允许工作压力P0相当。搭接焊铝塑管也能满足95 ℃、1.25 MPa下使用寿命为50年的要求。根据国家标准对搭接焊铝塑管与对接焊铝塑管的铝管层最小壁厚和最小拉伸强度的要求,计算出16-50规格的搭接焊铝塑管与对接焊铝塑管的P0。结果表明,小规格二者的P0相当,大规格对接焊铝塑管的P0优势明显。  相似文献   

15.
混凝土结构用纤维增强塑料筋的力学性能Ⅰ.实验研究   总被引:4,自引:2,他引:4  
纤维增强塑料筋的较差延伸性及其脆断的破坏模式是从材料性能上阻碍其替代传统的钢筋而广泛应用于混凝土结构中的一个主要原因.本文以解决这个问题为目标,提出了一种简单的成型方法:即在纤维拉挤芯材的外面按一定角度缠绕一定层数的纤维,制成新的FRP缠绕筋.这种FRP缠绕筋的拉伸性能呈明显的双线性,即应力在通过名义屈服点后,继续按线性规律随应变的增加而增加,直至应变达到极限.极限强度和应变都高于屈服点的应力和应变.本文还考察了纤维缠绕角度和缠绕层数对FRP筋拉伸性能的影响 .  相似文献   

16.
以玻璃纤维多轴向经编针织物为增强体,以环氧树脂为基体,将玻璃短纤维添加到玻纤织物增强体层之间,制备层间含有玻璃短纤维的多层多轴向经编复合材料。利用万能力学材料试验机对复合材料的层间撕裂性能进行测试和电镜扫描,对撕裂后的复合材料层间形态进行了观察,研究了玻璃短纤维对复合材料层间性能的影响。结果表明,玻璃短纤维增韧处理的复合材料层间撕裂性能明显增强,载荷-位移曲线初始斜率大,复合材料不易被以撕裂形式为主的载荷破坏。  相似文献   

17.
Long-fiber reinforced thermoplastic composites were made from 9 mm long glass fiber reinforced PP pellets by alternative procedures of roll-mill and hot-press molding. The severe problem of fiber breaking during the process could be avoided by this method. The average fiber length of this composite was ∼7 mm long. More than 80% of fibers in the composite were aligned within the 20° range. In the major fiber-oriented direction, at 25°C, the tensile strength of this composite was 205 MPa. At elevated temperatures in the range of 25°C to 125°C, the tensile strength was inversely proportional to the temperature. The two-parameter Weibull distribution function was used to simulate the strength distribution of the composite. Results showed that the strength distribution curve shifted from high to low as the temperature increased.  相似文献   

18.
界面结合性能对制备性能优异的复合材料具有重要意义。通过对双环戊二烯(DCPD)与玻璃纤维(GF)的浸润性进行研究,将其与等效环氧树脂比较,开发了一种与玻璃纤维具有较好结合性的DCPD树脂,用其制备出一种综合性能优异的玻璃纤维增强PDCPD基复合材料。通过动态接触角、90?拉伸强度和层间剪切强度实验,测定了不同树脂与玻璃纤维之间的粘附力,提供了玻璃纤维与不同树脂界面性能差异。结果表明,SCB-600 DCPD树脂与玻璃纤维的结合性较优,动态接触角为60.35??0.3?,90?拉伸强度为(42.3?1.6) MPa,层间剪切强度为(61.3?3.2) MPa,与1564环氧树脂相当。进一步优化了DCPD树脂质量分数,当树脂质量分数为30%?2%时,SCB-600 DCPD复合材料具有相对最优的力学性能,材料拉伸强度为(1180.1?4.1) MPa,弯曲强度为(1060.4?4.6) MPa,缺口冲击强度为(145.3?4.8) KJ/m2。其弯曲和拉伸强度与玻璃纤维增强环氧树脂基复合材料的性能基本相当,但缺口冲击强度优于1564环氧树脂。  相似文献   

19.
聚丙烯/玻纤缠绕复合管的制备与应用   总被引:1,自引:0,他引:1  
以聚丙烯管为内衬,表面经处理后,缠绕浸胶玻纤,形成独特的聚丙烯/玻纤缠绕复合管。该复合管材的轴向拉伸强度、轴向压缩强度和界面剪切强度分别大于130MPa、150MPa及8MPa。实际使用表明,该复合管具有良好的耐化学药品性、耐热性,力学强度高,密度小,而且施工简便,使用寿命长,可代替不锈钢等金属管。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号