首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用模压法进行发泡,研究氯化聚乙烯橡胶(CM)与聚氯乙烯(PVC)的共混比和发泡剂AC用量对发泡体的性能和泡孔结构的影响。结果表明:随着CM用量的增大,CM/PVC发泡材料的发泡密度逐渐减小,泡孔体积和发泡倍率逐渐增大,当CM/PVC共混比为50/50时,发泡材料具有较好的综合性能;随着发泡剂AC用量的增大,发泡材料的发泡密度减小,拉伸强度和撕裂强度逐渐减小。  相似文献   

2.
采用模压法进行发泡,研究了氯化聚乙烯(CM)与聚氯乙烯(PVC)的共混比和发泡剂用量对发泡体的泡体性能、泡孔结构的影响。结果表明,不同CM/PVC共混比的复合材料,随体系中CM的增加,发泡密度逐渐减小、泡孔体积和发泡倍率逐渐增大,当CM/PVC=50/50时,发泡材料具有较好的综合性能;改变共混体系中发泡剂AC的用量,测试泡体性能及观察泡孔结构得出,随AC发泡剂用量的增加,发泡材料的发泡密度减小,其相应的物理机械性能如拉伸强度、撕裂强度逐渐降低。  相似文献   

3.
以乙烯-醋酸乙烯酯橡胶(EVM)和聚乳酸(PLA)共混物为基体材料,经模压发泡制备了共混发泡材料。研究了EVM/PLA不同共混比、硫化剂(DCP)、发泡剂(AC)和白炭黑用量以及不同发泡时间对EVM/PLA共混物发泡材料泡孔结构和物理机械性能的影响。结果表明,随PLA组分的减少,白炭黑和DCP用量的增加,泡孔逐渐减小,均匀度增加,孔壁增厚,材料的密度、拉伸强度和拉断伸长率呈升高趋势,发泡倍率呈降低趋势。随发泡剂AC用量的增加,泡孔壁变薄,平均泡孔尺寸变化不大,材料的密度、拉伸强度和拉断伸长率呈降低趋势,发泡倍率增加。随硫化时间的延长,泡孔尺寸变小,孔壁增厚、发泡倍率逐渐下降,拉伸强度先增大后减少,拉断伸长率先下降后上升。  相似文献   

4.
采用化学发泡法,用热塑性聚氨酯(PUR–T)及偶氮二甲酰胺(AC)/Na HCO3,AC/尿素及4,4’–氧代双苯磺酰肼(OBSH)/Na HCO3,OBSH/尿素复合发泡剂和交联剂甲苯二异氰酸酯(TDI)制备出交联型PUR–T发泡材料,通过万能电子试验机、发泡倍数和扫描电子显微镜分析比较了不同复合发泡剂的发泡效果,探讨了AC/Na HCO3用量配比和TDI用量对PUR–T发泡材料力学性能、发泡倍数和泡孔结构的影响。结果表明,AC/Na HCO3复合发泡剂对PUR–T的发泡效果最佳,泡孔均匀细密且结构最为稳定;当AC和Na HCO3用量均为0.2份、TDI用量为1.2份时,发泡剂的发泡速率和PUR–T的交联速率最匹配,发泡倍数为1.421倍,发泡效果最佳,制得的PUR–T发泡材料的力学性能最好,其拉伸强度达11.23 MPa,断裂伸长率达311%。  相似文献   

5.
研究了线型低密度聚乙烯(PE–LLD)/超高分子量聚乙烯(PE–UHMW)共混物的超临界CO2微孔发泡行为,探讨了PE–UHMW含量、发泡温度和饱和压力对泡孔形貌的影响。采用差示扫描量热仪和旋转流变仪对PE–LLD及其共混物的热性质和流变性质进行了测试和表征,并通过扫描电子显微镜表征和分析了发泡样品的泡孔形貌。结果表明,少量PE–UHMW的加入可以显著降低PE–LLD发泡样品的孔径,增加孔密度。随着发泡温度的升高,PE–LLD样品的泡孔结构会发生塌陷现象,而加入少量PE–UHMW可以提高基体的黏度,起到支撑孔壁防止塌陷的作用,并最终得到均匀的开孔结构。另一方面,当温度一定时,饱和压力升高可以降低孔径并且得到开孔形貌的泡孔结构。  相似文献   

6.
采用超临界二氧化碳间歇式发泡法,成功制备了聚丙烯(PP)、PP/POE(乙烯-辛烯共聚物)微孔发泡材料。研究了发泡温度、饱和压力、POE含量对PP复合材料发泡性能的影响,并且,通过研究发泡材料的微观形貌、泡孔直径和膨胀倍率,得到最佳POE添加量。结果表明,在156℃、20 MPa条件下,PP可形成泡孔直径均一、高体积膨胀比的闭孔结构材料。加入POE后,PP复合材料的发泡性能得到改善,对发泡区间影响显著,PP/POE(80∶20)的发泡温度区在40℃以上;PP/POE(80∶20)随着发泡温度的上升,泡孔平均直径先增加后下降,泡孔密度和体积膨胀比逐渐增大;在120℃、20 MPa条件下,添加20%POE,得到了发泡范围大且泡孔均一性较好的发泡材料,泡孔密度为1.13×1011个/cm3,泡孔孔径为2.81μm。  相似文献   

7.
高俊强  张建华 《广东化工》2013,40(1):42-43,18
采用双螺杆熔融共混法制备聚丙烯/纳米二氧化硅复合材料。用化学发泡法注塑成型制备聚丙烯/纳米二氧化硅复合微孔发泡材料。研究了发泡倍率对微孔发泡材料结构与性能的影响。结果表明:泡孔平均直径随着发泡倍率的增加先减小后增大,泡孔密度随着发泡倍率的增加先增加后减少;微孔发泡材料的缺口冲击强度随着发泡倍率的增加而增加,拉伸强度随着发泡倍率的增加而线性降低。  相似文献   

8.
《塑料》2019,(6)
以超临界二氧化碳(scCO_2)和乙醇为共发泡剂,通过釜压发泡的方法制备特种工程塑料聚砜(PSU)珠粒泡沫制品。研究了乙醇含量、发泡温度、饱和压力对PSU泡沫材料的泡孔结构和珠粒粘接的影响,阐明了共溶剂发泡与泡沫材料泡孔结构的关系。结果表明,乙醇的引入增加了scCO_2在PSU基体中的溶解度,降低了PSU的发泡温度(最低发泡温度为150℃),拓宽了PSU的发泡温度窗口,增大了泡孔尺寸和膨胀倍率。当乙醇含量为33. 9%,发泡温度为180℃,饱和压力为8 MPa时,PSU珠粒泡沫的平均孔径可达86. 0μm,膨胀倍率可达10. 9倍,泡孔密度为9. 4×10~5个/cm~3,其泡沫制品珠粒间粘接良好,力学性能优良,压缩强度可达7. 2 MPa。  相似文献   

9.
《塑料》2016,(3)
将NPCC与PBAT熔融共混制备复合材料,并使用超临界CO_2间歇发泡法制备发泡材料。并对复合材料的结晶行为、流变性能、力学性能和发泡行为进行研究。结果表明:活性NPCC会提高PBAT的结晶温度和结晶度;PBAT复合体系的拉伸强度和断裂伸长率也在特定NPCC含量下出现上升趋势;同时,随着活性NPCC含量的增加,PBAT的熔体弹性和可发性线性提高。PBAT/NPCC复合材料泡沫的泡孔密度和发泡倍率也随着NPCC含量的增加而出现上升趋势,PBAT/NPCC泡沫的泡孔形态显著改善。  相似文献   

10.
以扩链剂KL–E4370、抗氧剂1010对线型尼龙6(PA6)进行改性,制备出具有高熔体强度的改性PA6材料。采用固态发泡的发泡方法,通过超临界CO2模压发泡制备相应发泡材料。通过差示扫描量热仪,流变仪来表征改性材料的可发泡性,并通过扫描电子显微镜来观测发泡材料的泡孔形貌。探究不同工艺条件对PA6泡沫泡孔结构的影响,分析了不同泡孔结构对发泡材料力学性能的影响。在饱和压力为10~20 MPa、发泡温度为223~231℃的范围内制备的PA6泡沫泡孔直径在18.3~143.6μm之间,泡孔密度为7.42×106~1.75×109个/cm3,发泡倍率为5.6~22.4。所得PA6泡沫的拉伸强度为1.5~5.8 MPa,断裂伸长率为22%~51%,压缩强度为0.03~2.47 MPa。  相似文献   

11.
通过沥青改性胶粉及采用相容剂与聚丙烯共混制备了性能优良的热塑性弹性体(TPE)材料,并以超临界流体为发泡剂对其发泡性能进行了研究。实验结果表明,胶粉通过沥青改性后,可以明显地提高TPE的拉断伸长率,并且发泡TPE的泡孔平均直径增大,泡孔密度减少,相对密度减小,但是随着沥青用量的增加,材料的粘度降低,从而出现泡孔破裂和塌陷现象,最后导致泡孔平均直径和泡孔密度减小,相对密度增加。相容剂苯乙烯嵌段共聚物接枝马来酸酐(SEBS-g-MA)可以提TPE的拉断伸长率并改善泡孔结构。温度的升高和饱和压力的增大,都导致了发泡弹性体的泡孔增大,泡孔密度和相对密度减小。  相似文献   

12.
利用装有静态混合器的挤出机,制备热塑性聚氨酯弹性体/纳米碳纤维(TPU/CF)复合材料,以超临界二氧化碳(SC-CO2)为发泡剂,通过快速泄压法制备TPU/CF发泡样品,研究CF含量对复合材料熔体流动速率、泡孔结构、导电性能和力学性能的影响。结果表明:随着CF含量的增加,TPU/CF复合材料的熔体流动速率逐渐降低,发泡制品的泡孔平均直径逐渐减小,泡孔密度逐渐升高。当CF含量为24.65%,泡孔密度为4.20×109个/cm3,与TPU相比提高172.7%,泡孔平均直径为4.29μm,与TPU相比下降36.2%。CF含量为4.95%时,发泡倍率达到最大值(1.65)。随着CF含量的增加,发泡倍率逐渐下降。发泡使TPU及其复合材料的电阻率降低。CF的加入提高TPU的拉伸强度,降低断裂伸长率。CF含量为9.89%时,发泡前后材料的拉伸强度达到最大值,分别为8.76 MPa和5.24 MPa。  相似文献   

13.
以超临界CO2为物理发泡剂通过固态间歇发泡法制备了不同共混比例的聚苯硫醚/聚醚醚酮(PPS/PEEK)微孔材料。采用差示扫描量热法探讨了PPS/PEEK共混物的热性能,通过扫描电子显微镜观察分析了共混组成和饱和压力对微孔材料泡孔结构与分布的影响规律,并对微孔材料的冲击强度、介电常数和动态力学性能进行了研究。结果表明,共混使PPS相和PEEK相的结晶度增大,共混物中的气体饱和浓度随着PEEK组分含量的增加而增大。与纯PPS和PEEK相比,共混物中形成致密的多级泡孔结构。饱和压力越大则微孔材料的泡孔密度越大,且泡孔尺寸越小。微孔发泡使PPS/PEEK共混物的冲击强度增大,介电常数和储能模量降低。  相似文献   

14.
采用模压化学发泡的方法并添加过氧化二异丙苯、交联助剂三羟甲基丙烷三甲基丙烯酸酯和木粉成功制备了聚丁二酸丁二酯(PBS)/木粉复合发泡材料,并对其性能进行了研究。结果表明,交联剂和木粉的加入能够有效提高PBS的储能模量、损耗模量以及熔体黏度,且流变性能随木粉含量增加而呈升高趋势;所制备的发泡材料均为闭孔结构,且泡孔大小较为均匀;随着木粉含量的增加,发泡材料的拉伸强度先升高后降低,但变化幅度较小,密度逐渐增大,而比拉伸强度、断裂伸长率和发泡倍率逐渐降低。木粉的含量为30份时仍能制备泡孔相对均匀的PBS/木粉复合发泡材料,其密度为0.33 g/cm3,且拉伸强度与未加木粉时相差不大。  相似文献   

15.
聚丙烯(PP)是结晶性聚合物,熔体强度低,发泡性能差。为了提高PP的微孔发泡性能,本文首先将PP与高密度聚乙烯(HDPE)共混,提高其熔体强度;然后在PP/HDPE共混体系中加入少量纳米CaCO3,研究CaCO3的含量对共混体系熔体强度及发泡材料泡孔结构的影响。研究结果表明,纳米CaCO3的加入使体系的熔体强度提高,且随着CaCO3含量的增加,泡孔尺寸减小,泡孔密度增加。然而,加入CaCO3以后,泡孔结构不是很规整,泡孔分布不均匀。  相似文献   

16.
采用高压毛细管流变仪对不同含量碳酸钙(CaCO3)的聚丙烯/线型低密度聚乙烯(PP/LLDPE)共混物的流变性能进行了表征;并利用自制的实验装置,在不同发泡温度和饱和压力下,对共混物进行了超临界CO2模拟挤出发泡实验研究。结果表明:使用高熔体强度聚丙(烯HMSPP)发泡可以获得较好的泡孔形态;添加成核剂CaCO3可以使发泡试样的泡孔结构更加规则,泡孔分布更加均匀;随着CaCO3含量的增加,共混物的稠度上升,非牛顿指数降低,当CaCO3含量为3%时,共混物的发泡效果较好;130℃为最佳发泡温度,此时发泡试样的结构完整尺,寸均匀;随着饱和压力的增加发,泡试样的泡孔密度也有所提高。  相似文献   

17.
张学双 《辽宁化工》2014,(12):1486-1488
研究了加入不同量硫化剂DCBP对硅橡胶发泡材料各项力学及物理性能的影响。结果表明:随着DCBP加入量的不断提高硅橡胶发泡材料的拉伸强度、密度、压缩永久变形升高;发泡倍率降低;断裂伸长率先升高后下降且随着硫化剂用量增加泡孔减小。  相似文献   

18.
通过化学交联提高聚丙烯/低密度聚乙烯(PP/LDPE)共混物的熔体强度,并对交联PP/LDPE共混物的发泡性能进行了研究.结果表明:交联PP/LDPE共混物熔体在拉伸过程中出现明显的应变硬化现象,熔体强度明显提高;采用交联PP/LDPE共混物可制得泡孔均匀、性能良好的闭孔泡沫材料;随着LDPE含量的增加,交联PP/LDPE共混物的凝胶含量逐渐增加,熔体流动速率(MFR)减小;随着发泡剂用量的增加,交联PP/LDPE共混物泡沫的密度逐渐减小,泡孔孔径略有增大;随着泡沫密度的减小,泡沫材料的拉伸强度、压缩强度及压缩永久变形逐渐减小,拉伸断裂伸长率基本不变.  相似文献   

19.
硅酸钙对PBAT流变性能与发泡行为的影响   总被引:1,自引:0,他引:1  
通过熔融共混法制备聚己二酸/对苯二甲酸丁二酯(PBAT)/硅酸钙复合材料,对复合材料的结晶行为、流变行为和发泡行为进行研究。结果表明,活性硅酸钙粉体的加入降低PBAT的分子链运动能力,导致绝对结晶度由15.17%降低至13.79%。此外,PBAT的熔体弹性和可发性随着硅酸钙加入而提高。发泡成型后,PBAT泡沫的泡孔密度和发泡倍率都随着硅酸钙含量增加出现上升趋势,加入质量分数4%的硅酸钙后,PBAT发泡材料的泡孔密度提高至5.93×10~7个/cm~3,发泡倍率达到15.26倍。硅酸钙对PBAT发泡材料的泡孔形态具有显著的调控作用。  相似文献   

20.
《塑料科技》2019,(11):35-39
以不同共混比例的低熔点聚丙烯和普通共聚聚丙烯为原料、CO_2为发泡剂,制备了聚丙烯共混发泡材料。采用差示扫描量热仪(DSC)、傅里叶红外光谱(FTIR)和旋转流变仪考察了该共混改性聚丙烯的熔融性能、乙烯含量以及熔体强度,并通过扫描电子显微镜(SEM)分析了改性聚丙烯发泡后的泡孔形态。结果表明:低熔点聚丙烯的加入使共混体系的熔体强度显著降低,当其用量为20份时,发泡材料的泡孔形态达到最佳,此时发泡倍率、泡孔直径和泡孔密度分别为14.38倍、658μm和1.54×10~5个/cm~3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号