首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 546 毫秒
1.
采用新型有机次膦酸盐复配型阻燃剂制备无卤阻燃长玻纤增强尼龙6(LGFPA6)复合材料。通过垂直燃烧(UL94)、极限氧指数(LOI)、热重(TG)分析、差示扫描量热(DSC)仪及力学性能测试系统研究了阻燃剂含量对LGFPA6复合材料性能的影响。结果表明,阻燃剂质量分数为15%时,可使阻燃LGFPA6复合材料的阻燃等级达到UL94 V–0级,LOI为28.0%,力学性能最佳。TG分析表明,阻燃剂降低了LGFPA6的热稳定性,促进基体成炭。DSC结果表明,阻燃剂质量分数为15%时,对LGFPA6的结晶性能影响最小。阻燃剂质量分数为15%时,复合材料的综合性能最好。  相似文献   

2.
以聚酰胺(PA) 6为基体材料,添加二乙基次膦酸铝(ADP)、三聚氰胺氰尿酸盐(MCA)为阻燃剂,通过熔融共混制备无卤阻燃PA6复合材料。采用水平垂直燃烧仪、氧指数测定仪、万能材料试验机以及热重分析仪研究了ADP和MCA用量对无卤阻燃PA6阻燃性能、力学性能、热降解行为的影响,并采用扫描电子显微镜观察了燃烧后炭层的形貌,探讨了ADP与MCA间的协效阻燃作用。结果表明,制备的阻燃PA6复合材料均能达到UL94 V–0阻燃级别;当ADP添加量为18%时,极限氧指数(LOI)可达33.3%;当添加14% ADP时,ADP/MCA复配阻燃体系的LOI值保持在31%以上;MCA对ADP产生协效阻燃作用,MCA的加入使得热分解温度降低,加速了PA6在燃烧时的成炭,改善了炭层结构,并使PA6具有较好的力学性能。  相似文献   

3.
以磷系阻燃剂2–羧乙基苯基次膦酸(CEPP)和氢氧化钠(NaOH)为原料,合成2–丙酸钠苯基次膦酸钠(CEPP–Na),并与聚对苯二甲酸乙二酯(PET)共混制得阻燃聚酯。通过傅立叶变换红外光谱和能谱表征了产物结构,采用极限氧指数(LOI)测试、热重分析、扫描电子显微镜观察等方法对产物的燃烧性能、热性能、相容性、成炭形貌等进行研究。结果表明,合成的CEPP–Na与PET基体相容性良好,且避免了直接使用CEPP带来的降解问题。当CEPP–Na的质量分数为15%时,阻燃聚酯的LOI为28.5%,且UL–94达到V–0级。  相似文献   

4.
采用S–N–P阻燃剂通过熔融共混法制备了阻燃聚碳酸酯(PC)材料,通过极限氧指数(LOI)仪、垂直燃烧仪、万能电子试验机、冲击试验机和热重(TG)分析仪分别研究了阻燃PC的阻燃性能、力学性能和热性能。结果表明,S–N–P阻燃剂能显著提高PC的阻燃性能,当其质量分数为0.1%时,阻燃PC的LOI值达到35.5%,与纯PC相比提高了43.15%,能通过UL 94 V–0等级,同时拉伸强度相比纯PC提高了17.35%,弯曲强度提高了36.7%,断裂伸长率提高了121.6%,缺口冲击强度仅降低了7.63%;TG分析表明S–N–P阻燃剂能加速PC降解,从而加速炭层的形成起到阻燃作用。  相似文献   

5.
采用极限氧指数(LOI)、垂直燃烧试验和热失重(TG)等手段分析了含磷三嚷环聚合物(PTP)对阻燃聚丙烯的阻燃性能及热性能的影响.结果表明,PTP有助于聚丙烯阻燃性能的提高;当添加29%(质量分数)多聚磷酸铵(APP)/季戊四醇(PER)/PTP阻燃剂时,阻燃聚丙烯LOI达到28.4%,UL-94阻燃级别达到V-0级,700℃时在氮气和空气中阻燃聚丙烯残炭率分别为25.5%和20.3%.  相似文献   

6.
胡志 《塑料工业》2022,(11):157-160
以环氧树脂(EP)为基体,加入非聚磷酸铵(APP)膨胀型无卤阻燃剂FR-1420制备得到了无卤阻燃环氧树脂材料,考察了阻燃剂用量对环氧树脂阻燃性能及力学性能的影响,通过热重分析(TG)研究了材料的热分解行为,通过扫描电镜(SEM)研究了残炭形貌。结果表明,阻燃剂FR-1420的加入能显著提高环氧树脂的阻燃性能,FR-1420质量分数达到10%时,材料3.2 mm样条即可达到UL94 V-0级,极限氧指数(LOI)达到26.6%;增加阻燃剂质量分数至20%,材料1.6 mm样条可以达到UL94 V-0级,LOI增加至32.6%。TG分析显示,加入阻燃剂后材料的初始分解温度提前,残炭量增加;SEM形貌分析显示,垂直燃烧测试后产生的炭层为连续致密结构,隔热隔氧效果较好。阻燃剂与环氧树脂界面相容性较好,阻燃环氧树脂材料强度略微降低,材料模量增加。  相似文献   

7.
用季戊四醇磷酸酯(PEPA)作成炭剂,与三聚氰胺磷酸盐(MP)和协效剂按一定比例复配成膨胀型阻燃剂(IFR),用于聚丙烯(PP)的阻燃。研究IFR含量对PP燃烧性能和力学性能的影响,结果表明:IFR添加量为23%时,阻燃PP的氧指数(LOI)为26.3%,阻燃等级达到UL94 V-0级。与PP相比,阻燃PP的拉伸强度、冲击强度降低,弯曲强度提高。采用差示扫描量热仪(DSC)、热失重(TG)、扫描电镜(SEM)等方法对阻燃PP的热性能、成炭性能等进行分析,结果表明:随IFR添加量增大,PP的结晶度增大,起始分解温度降低,高温成炭率提高。阻燃PP燃烧后形成表面致密,内部多孔的膨胀炭层结构。  相似文献   

8.
采用膨胀型阻燃剂(IFR)及协效剂海泡石(SP)对长玻璃纤维增强聚丙烯(PP/LGF)复合材料进行阻燃,通过双螺杆挤出机制备了PP/LGF母粒,IFR母粒和SP母粒,然后将这3种母粒通过注塑机制备了PP/LGF/IFR/SP复合材料,通过极限氧指数(LOI)、垂直燃烧测试、锥形量热仪、热重分析、扫描电子显微镜、力学性能测试等表征PP/LGF各阻燃复合体系的性能。结果表明,当IFR质量分数为22%时,PP/LGF/IFR阻燃复合材料的LOI为28.8%,且垂直燃烧等级达到V–0级;锥形量热仪测试结果表明加入IFR及SP后阻燃复合体系的第一热释放速率峰值降低,而第二热释放速率峰消失;SP质量分数为1%,IFR质量分数为21%的PP/LGF/IFR/SP阻燃复合材料LOI为29.6%,垂直燃烧等级达到V–0级,热释放速率峰值和总热释放量得到有效降低,热稳定性最好,且燃烧时产生致密的炭层覆盖于玻璃纤维表面,同时加入1%SP后复合材料的力学性能下降幅度相对较小。  相似文献   

9.
分别采用十溴二苯乙烷(DBDPE)、四溴双酚A(TBBA)、溴代三嗪(Br N)为阻燃剂和三氧化二锑、氢氧化铝、硅酮粉、抗滴落剂等协效阻燃剂复配,与丙烯腈–丁二烯–苯乙烯塑料(ABS)通过熔融共混挤出制备阻燃ABS复合材料,对比了这3种阻燃剂对复合材料阻燃性能、力学性能、熔体流动性能和热性能的影响。结果表明,添加质量分数为8%的DBDPE即可使ABS复合材料垂直燃烧等级达到V–0级,热变形温度达到74.3℃,但DBDPE对复合材料拉伸、冲击性能及熔体流动性能有较大的负面影响;当3种阻燃剂质量分数均为12%时,添加Br N的复合材料的垂直燃烧等级达到V–0级,缺口冲击强度和热变形温度最高,分别为27.0 k J/m2和74.7℃,热稳定性最好,但拉伸和弯曲强度较低,在相同阻燃剂用量下,添加TBBA的复合材料拉伸、弯曲强度和MFR最大,分别为41.6,60.5 MPa和22.3 g/10 min,但其垂直燃烧等级仅为V–1级。  相似文献   

10.
选用膨胀型阻燃剂对高等规聚丁烯–1(PB–1)进行阻燃改性,并研究了硅油和膨胀型阻燃剂的协效作用。结果表明,当膨胀型阻燃剂50A质量分数为25%时,可以使高等规PB–1的极限氧指数达到38.1%,UL94级别达到V–0级;但此时体系的力学性能下降严重,其中拉伸强度下降了45.7%,断裂伸长率下降了56.0%。当添加质量分数0.6%的硅油B或高温硅油时,可以使阻燃剂质量分数为20%的高等规PB–1达到V–0级,并使其拉伸性能和冲击性能提高,其中拉伸强度提高了约19.2%,断裂伸长率提高了56.3%。  相似文献   

11.
李湘 《工程塑料应用》2021,(4):131-134,156
研究了有机蛭石(O–VMT)和二乙基次磷酸铝(ADP)对玻纤(GF)增强聚对苯二甲酸丁二酯(PBT)(PBT/GF)的阻燃作用,对复合材料的极限氧指数(LOI)和UL94阻燃等级进行测试,并用热失重和锥形量热仪进行分析。结果发现,ADP可以很好阻燃PBT/GF,加入19%的ADP,复合材料的LOI为33.5%,阻燃达到UL941.6 mm V–0级,相对PBT/GF,其点燃时间、火灾性能指数(FPI)有所提高,热释放速率峰值(PHRR)、平均热释放速率(AHRR)、总热释放量(THR)及总生烟量(TSR)有所降低。同时加入15%的ADP和2%的O–VMT,复合材料的PHRR,AHRR,THR和TSR相对单独添加17%ADP的材料,分别降低12.8%,9.5%,4.5%和15.9%,FPI提高15.4%,LOI和UL94阻燃也对应提高,O–VMT和ADP在PBT/GF中有协同阻燃作用。  相似文献   

12.
采用密胺包覆聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)作为膨胀型阻燃剂(IFR)对不饱和树脂(UP)进行改性,研究了APP、PER和MEL不同复配比例及用量对不饱和树脂基复合材料阻燃性能和力学性能的影响。基于IFR最佳用量,以二乙基次磷酸铝(ADP)为协效剂,研究了ADP用量对IFR/UP阻燃复合材料阻燃性能、力学性能及热稳定性的影响。结果表明,当APP∶PER∶MEL复配比例为4∶1∶1,IFR添加量为15 %(质量分数,下同)时,复合材料综合性能最佳,其极限氧指数为27.4 %,UL 94垂直燃烧达到V?1等级,弯曲强度和冲击韧性分别为100.3 MPa和6.3 kJ/m2;ADP的引入能够进一步提高IFR/UP复合材料阻燃性能,且随着ADP质量分数的增加而增强;当ADP质量分数为2 %时,IFR?ADP/UP复合材料极限氧指数为28.5 %并达到V?0阻燃等级,弯曲强度和冲击韧性分别为110 MPa和7.8 kJ/m2,与IFR/UP复合材料相比,分别提高了9.7 %和23.8 %;ADP能够促进IFR/UP复合材料表面成炭,缓解基体的热降解。  相似文献   

13.
通过用新戊二醇磷酰氯对线型酚醛树脂(PF)酚羟基实行磷酰化封端处理,制备了线型PF基新戊二醇磷酸酯(NDMPP)阻燃剂,将其应用于阻燃PA6。采用核磁共振氢谱(1H NMR)、核磁共振磷谱(31P NMR)和傅立叶变换红外光谱(FTIR)表征了NDMPP的结构,采用热重(TG)分析研究其热分解行为,采用极限氧指数(LOI)和UL 94测试其阻燃PA6材料的阻燃性能,采用万能材料试验机和冲击试验机测试阻燃材料的力学性能。1H NMR,31P NMR和FTIR结果表明,线型PF中大约82%的羟基被磷酰化,NDMPP中的磷含量约为11.9%。TG分析结果表明,NDMPP阻燃剂在氮气气氛下起始分解温度超过250℃,600℃的残炭率达到43.5%,显示出良好的热稳定性。当NDMPP质量分数为25%时,其阻燃的PA6达到UL 94 V–0等级,LOI达到33.4%,而拉伸强度、缺口冲击强度、弯曲强度和弯曲弹性模量分别为纯PA6的76%,41%,72%和71%。  相似文献   

14.
磷氮复配无卤阻燃聚苯醚合金的研究   总被引:1,自引:0,他引:1  
采用固体阻燃剂间苯二酚双[二(2,6-二甲苯基)磷酸酯](RXP)及其与三聚氰胺氰脲酸盐(MCA)的复配阻燃剂,制备了无卤阻燃聚苯醚/高抗冲聚苯乙烯/苯乙烯-丁二烯-苯乙烯热塑性弹性体(PPE/PS-HI/SBS)合金,通过氧指数、水平垂直燃烧、扫描电子显微镜、力学性能等测试分析方法,考察了PPE/PS-HL/SBS合...  相似文献   

15.
钟柳  欧育湘 《塑料》2006,35(1):34-38
研究制备了环氧树脂(EP)/有机蒙脱土(OMMT)、N,N-二(2-羟乙基)氨甲基膦酸二乙酯(BHAPE)阻燃剂阻燃的EP和EP/OMMT等复合材料。XRD证明分散在复合材料中的OMMT为剥离型的,且BHAPE的加入不影响材料中OMMT剥离后的层间距。研究证明,单独使用BHAPE很难使EP通过UL 94 V-0阻燃级,仅添加OMMT的EP固化物,其氧指数和UL94阻燃性能几乎与纯EP固化物的一样。但是同时添加BHAPE和OMMT的EP固化物,当BHAPE和OMMT的添加量分别为25%和5%时,不仅BHAPE/EP/OMMT复合物的CONE阻燃参数都明显降低,而且能通过UL94V-0级。可能是BHAPE和OMMT在凝聚相同时发挥作用,即BHAPE和OMMT协同阻燃作用提高了复合材料的综合阻燃性能。  相似文献   

16.
Three types of melamine cyanurate (MCA) with micrometer‐size sphere‐like, micrometer‐scale rod‐like, and nanometer‐scale flake‐like morphologies were synthesized by changing the chemical circumstances of the reactions. The microcosmic morphologies of MCA were characterized via scanning electron microscopy and X‐ray diffraction. After the MCAs with different morphologies were incorporated into polyamide 6 (PA6), the flame‐retardant properties of the MCA/PA6 composites were investigated using the limited oxygen index (LOI), UL94, and cone calorimeter tests. The MCA/PA6 composites with nanometer‐scale flake‐like MCA obtained an LOI value of 29.5% and a UL94 V‐0 rating, which were higher than those with micrometer‐size sphere‐like and rod‐like MCAs. However, the different morphologies did not affect the heat release rate, total smoke release, average carbon monoxide yield, and average carbon dioxide yield based on the cone calorimeter. The flame‐retardant mechanism of MCAs with different morphologies was investigated via thermal gravimetric analysis (TGA) and TGA‐Fourier transform infrared spectra. The results show that the different morphologies of MCA resulted in different dispersed evenness of MCA. Further, the nanometer‐scale flake‐like morphology of MCA brought more interactions of hydrogen bond between MCA and PA6, which resulted in the delay of MCA decomposition and the enhancement of MCA flame‐retardant effect. The nanometer‐scale flake‐like MCA had a better performance compared with the other samples because of the delaying and even release of flame‐retardant effect by the decomposition of evenly dispersed MCA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40558.  相似文献   

17.
通过熔融共混和模压成型技术制备了聚对苯二甲酸丁二酯(PBT)/膨胀型阻燃剂(IFR)共混和层状复合材料,其中层状复合材料为3层阻燃结构,内层为非阻燃层(纯PBT),内层外面两层为阻燃层(PBT/IFR)。通过UL94垂直燃烧、极限氧指数(LOI)以及拉伸和冲击性能测试对比分析了两种复合材料的阻燃性能和力学性能。结果表明,与PBT/IFR共混复合材料相比,PBT/IFR层状复合材料的阻燃性能提高幅度更大,虽然低IFR含量下其力学性能低于共混复合材料,但随着IFR含量增加,力学性能下降幅度更小。当层状复合材料中的阻燃层/非阻燃层/阻燃层的厚度比为1.5 mm/1 mm/1.5 mm,即IFR质量分数为22.5%时,其拉伸强度、断裂伸长率和冲击强度与相同IFR用量下的共混复合材料相当,而阻燃性能与IFR质量分数为30%的共混复合材料相当,其UL 94阻燃等级达到V–0级,LOI提高到24.4%。这表明,采用层状阻燃可控受限结构,可在较低的IFR用量下更好地提高PBT/IFR复合材料的阻燃性能,同时减缓了力学性能下降的幅度。  相似文献   

18.
以可发性聚苯乙烯(EPS)为基材,利用酚醛树脂(PF)作为包覆剂,可膨胀石墨(EG)作为阻燃剂,利用包覆法,制备了一种无卤环保、阻燃性能好、力学性能优良的热固性PS外墙泡沫保温板。研究了PF与EG对EPS保温板阻燃及力学性能的影响,探究了阻燃机理。结果表明,使用PF作为包覆剂制得的EPS/PF泡沫保温板力学性能尤其是压缩强度明显提高,当PF用量为90份时,LOI值可由18%提升至27.9%;阻燃剂EG的加入,使得保温板的阻燃性能及压缩性能进一步提高,当添加4份的EG时,保温板的压缩强度最高,LOI值达到了29.4%,垂直燃烧等级达到V–0级,残炭率由纯EPS的10%提高到50%。  相似文献   

19.
选择了有机磷系和磷氮协同两种不同的无卤阻燃剂与溶剂型PU进行共混制备无卤阻燃PU,对其力学性能、阻燃性能及耐碱性能进行了系统研究。结果发现:相较于磷氮协同阻燃剂(SN-605),采用有机磷系阻燃剂(JL-30)改性PU显示出更好的阻燃性能与耐碱性能;当阻燃剂质量分数为11.1%时,阻燃PU的LOI可以达到29.1%,垂直燃烧测试达到V-0级;并且具有较好的耐碱性能,在90℃、30 g/L NaOH溶液中碱处理40 min后,其LOI仍然可以达到28.7%,垂直燃烧测试等级没有下降;但两种阻燃剂的加入均会使PU的抗张强度出现不同程度的下降。此外,热失重测试(TG)显示,两种阻燃PU的阻燃机制不同,JL阻燃剂的加入使PU的热分解温度降低,并且在800℃时的残炭量没有明显增加,呈现明显的气相阻燃机制;而SN阻燃剂的加入使PU的残炭量明显增加,呈现明显的凝聚相阻燃机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号