首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以二乙二醇和苯基膦酰二氯为主要原料合成了液态阻燃含磷多元醇,研究了含磷多元醇(部分替换聚酯多元醇)、液态阻燃剂甲基膦酸二甲酯(DMMP)对聚氨酯硬泡阻燃性能的影响。采用极限氧指数法(LOI)对液态阻燃体系改性聚氨酯硬泡的阻燃性能进行了表征。结果表明,随着含磷多元醇用量的增加,聚氨酯硬泡极限氧指数提高到25%(纯样21.5%);再添加DMMP后LOI提升到29.5%,达到了国家标准GB/T8624-2012中B2级氧指数要求,但存在一定的体积收缩。  相似文献   

2.
以三聚氰胺、甲醛、多元醇类起始剂和环氧丙烷为主要原料合成了用于聚氨酯硬泡的三聚氰胺基聚醚多元醇。考察了预反应温度、复配起始剂对聚醚性能的影响,并研究了三聚氰胺聚醚多元醇在聚氨酯硬泡中的应用性能。结果表明,使用三乙醇胺和蔗糖作为三聚氰胺-甲醛树脂的复配起始剂,在80℃条件下先加入部分环氧丙烷进行预反应,合成的阻燃聚醚具有一定的阻燃效果,在同等发泡条件下,用三聚氰胺阻燃聚醚完全替代聚醚4110,制备的聚氨酯硬泡氧指数绝对值增加2. 8%~4. 1%。  相似文献   

3.
职慧珍 《精细化工》2021,38(9):1913-1919,1927
以五氧化二磷、环氧丙烷为主要原料合成了低聚羟丙基磷酸乙酯阻燃剂.考察了环氧丙烷的滴加温度及用量、反应温度、反应时间、反应体系压力对其酸值的影响.得到的最优工艺条件为环氧丙烷与中间体Ⅱ的质量比为0.67:1.0、环氧丙烷滴加温度为15℃、反应体系压力为0.5 MPa、反应温度为70℃、反应时间为1.5 h,在该条件下产品酸值可达0.6 mg KOH/g.利用FTIR、GPC、TGA、化学滴定法等对其结构及性能进行了表征.用低聚羟丙基磷酸乙酯阻燃剂对聚氨酯硬泡(RPUF)进行阻燃改性得到阻燃聚氨酯硬泡.TGA数据表明,当阻燃剂添加量为10%(以聚醚多元醇质量计,下同)时,900℃的残炭量由未改性前的7.9%提升到20.7%;其阻燃性能测试数据表明,当阻燃剂添加量为30%时,制备的聚氨酯硬泡的极限氧指数值(LOI)可达27.1%,通过垂直燃烧(UL-94)V-0级,且保留了泡沫基本的机械性能.  相似文献   

4.
以三羟甲基氧磷(THPO)和环氧丙烷(PO)为主要原料制备了一种含磷聚醚多元醇,再以该含磷聚醚多元醇为原料制备了阻燃硬质聚氨酯泡沫塑料。对该含磷聚醚多元醇的研究表明,随着含磷量的增加,羟值、黏度等均有所增加。应用试验表明,仅用含磷阻燃聚醚多元醇制备的聚氨酯硬泡极限氧指数可达25.6%,具有优异的阻燃性能。  相似文献   

5.
采用三聚氰胺和环氧丙烷在有机溶剂中反应合成了阻燃三聚氰胺聚醚多元醇。考察了溶剂、温度、催化剂等因素对反应体系、反应时间和羟值的影响。结果表明,以N,N-二甲基乙酰胺为溶剂,三聚氰胺质量的5%的甲醇钾为催化剂,160℃的反应条件为佳。反应3 h后,经后处理得到澄清的橙黄色三聚氰胺聚醚多元醇,羟值为405 mg KOH/g。该多元醇用于聚氨酯硬泡发泡,氧指数(LOI)为25,同等条件下比甘油聚醚多元醇制得的硬泡阻燃效果好。  相似文献   

6.
以1,1,1,3,3-五氟丙烷(HFC-245fa)为发泡剂,添加阻燃聚醚多元醇、阻燃聚酯多元醇或阻燃剂,制备了多种阻燃硬质聚氨酯泡沫塑料。对比研究了喷涂用HFC-245fa型聚氨酯硬泡的导热系数、尺寸稳定性、压缩强度和阻燃性能。结果表明,与未经改性聚氨酯硬泡相比,阻燃聚氨酯硬泡保持了优异的尺寸稳定性,并具有更低的导热系数和更优的阻燃性能。  相似文献   

7.
聚氨酯硬泡用阻燃多元醇制备路线综述   总被引:3,自引:0,他引:3  
王景存  韩怀强 《聚氨酯工业》2005,20(4):11-15,45
根据所含阻燃元素的不同,聚氨酯硬泡用阻燃多元醇大致可分为磷系阻燃多元醇、卤系阻燃多元醇、复合型阻燃多元醇及芳杂环类阻燃多元醇等。本文对各种类型多元醇的制备路线进行了总结,并介绍了几种具有代表性的合成方法。  相似文献   

8.
以二乙醇胺(DA)、甲醛和亚磷酸二乙酯(DP)为原料合成了一种新型阻燃二元醇(BHAPE),其与聚醚多元醇(4110)复配制备了阻燃型组合聚醚多元醇,用于制备阻燃型聚氨酯泡沫(FRPUF)。采用极限氧指数(LOI)、热重分析仪(TGA)、锥形量热仪(CCT)和万能试验机等对阻燃聚氨酯泡沫材的料性能进行了研究。结果表明,加入BHAPE可提高聚氨酯泡沫的阻燃性和热稳定性。BHAPE的质量为组合多元醇质量的40%时,聚氨酯泡沫材料的极限氧指数达23.1%,压缩强度为0.225 MPa。  相似文献   

9.
采用可再生的醇解蓖麻油多元醇为原料,与液溴进行加成反应制备溴化蓖麻油多元醇,通过红外光谱证实发生了溴化反应,并测定了产物粘度、羟值、酸值.通过发泡实验和氧指数、烟密度、水平燃烧等测试手段,考察了溴化蓖麻油基聚氨酯硬泡发泡参数和阻燃性质,并与工业级阻燃荆雅保RB-79制备的聚氨酯硬泡进行比较.结果表明,由溴化蓖麻油多元醇...  相似文献   

10.
通过箱式发泡法制备了含有添加型阻燃剂甲基膦酸二甲酯与反应型阻燃剂聚磷酸酯多元醇OP550的聚氨酯硬泡(RPUF)。利用热重分析仪、氧指数仪、锥形量热仪研究了体系中阻燃剂质量分数均为10%的情况下,两种不同类型阻燃剂的添加比例对聚氨酯硬泡热性能与阻燃性能的影响。结果表明,同时添加两种阻燃剂可提高聚氨酯硬泡在高温下的残炭率,当甲基膦酸二甲酯O∶P550=4 1∶(质量比)时,体系的氧指数可达24.4%,且热释放速率的峰值达到最低值144.51 kW/m2。此外,对两种阻燃剂的阻燃机理进行了初步的探讨。  相似文献   

11.
以国产苯酐聚酯多元醇为主要原料制备了组合聚醚,再与多异氰酸酯反应,制备了阻燃型聚氨酯硬质泡沫。讨论了苯酐聚酯多元醇、硅油及发泡剂等因素对泡沫阻燃性的影响。结果表明,该组合聚醚与多异氰酸酯反应,制得的阻燃型聚氨酯硬质泡沫,其氧指数在28以上,压缩强度为300kPa,达到了国家标准GB/T8624-1997中B2级氧指数的要求。  相似文献   

12.
用生物基阻燃聚酯多元醇替代石油基聚醚多元醇添加于聚氨酯硬泡组合聚醚中,研究了该生物基阻燃聚酯多元醇的替代量,以及在煤矿中阻燃效果。结果表明,生物基聚酯多元醇可替代部分石油基聚醚多元醇使用,当生物基聚酯多元醇在总聚醚多元醇体系中占40%~50%时,聚氨酯泡沫的压缩强度高、尺寸稳定性良好、导热系数低且阻燃效果理想,达到中华人民共和国煤炭行业MT-113—1995标准,保证了煤矿安全使用。  相似文献   

13.
以不同质量比的NH4H2PO4和三聚氰胺作为阻燃体系加入组合聚醚中,与多亚甲基多苯基异氰酸酯混合制备阻燃硬质聚氨酯泡沫(RPUF)。采用极限氧指数测定(LOI)、物理性能测试、残炭率实验、差热扫描(DSC)等手段对阻燃RPUF进行测试分析。结果表明,当NH4H2PO4/三聚氰胺质量份为20∶5,添加质量分数25%的该复配阻燃剂时,RPUF的物理机械性能较佳,其极限氧指数为26.5,残炭率为63.0%。  相似文献   

14.
研究了咪唑型离子液体阻燃硬质聚氨酯泡沫的可能性,分析了离子液体的种类、用量对硬质聚氨酯泡沫氧指数、水平燃烧速度、热分解性能的影响。结果表明,咪唑型离子液体对硬质聚氨酯泡沫有很好的阻燃效果,与1-丁基-3-甲基咪唑四氟硼酸盐([BMIM]BF4)相比,1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF6)的阻燃效果较好,氧指数随着离子液体的添加量增加而增加,当添加[BMIM]PF6质量分数为25%(相对组合聚醚)时,阻燃效果最好,可使氧指数达到24.2,水平燃烧速度降低,具有很好的自熄性。通过热分析可以看出,添加[BMIM]PF6离子液体后可以提高热分解温度,分解残留物增加,放热量大大减小,可有效抑制硬质聚氨酯泡沬的分解,提高其热稳定性。  相似文献   

15.
以氢氧化铝、三聚氰胺和聚磷酸铵为阻燃剂制备了阻燃聚氨酯硬质泡沫,研究了添加氢氧化铝前后阻燃剂用量对聚氨酯(PU)硬泡的阻燃性能和力学性能的影响。结果表明,铝/磷/氮复配阻燃体系的阻燃效果优于磷/氮阻燃体系,阻燃剂总添加量达30份时,PU硬泡同时具备较好的阻燃性能和力学性能,氧指数为32,烟密度为74,平均燃烧时间为31 s,其压缩强度和拉伸强度分别为6.52 MPa和6.16 MPa。  相似文献   

16.
本研究利用木质素磺酸钠对聚氨酯泡沫进行改性,提高其阻燃性能。首先,对木质素磺酸钠进行羟甲基化反应,得到羟甲基木质素磺酸钠(HSL),再将HSL部分替代聚醚多元醇,与聚合4,4'-二苯基甲烷二异氰酸酯(MDI)混合,制备羟甲基木质素磺酸钠改性聚氨酯泡沫,再添加膨胀石墨(EG)和次磷酸铝(AHP)进一步提高聚氨酯泡沫的阻燃性。制备出样品后分别进行极限氧指数(LOI)、热重分析(TGA)和扫描电子显微镜(SEM)测试。通过极限氧指数测试分析聚氨酯泡沫样品阻燃性能表明:当羟甲基木质素磺酸钠替代量为60%(以HSL质量占HSL和聚醚多元醇总质量的百分比计)时,所得聚氨酯泡沫材料的LOI指数达到21.6%,最大热降解速率降低了1.53 %/min,残炭量提高了15.04个百分点,泡沫试样中泡沫孔隙数量和面积减少。继续添加混合阻燃剂(膨胀石墨和次磷酸铝质量比为3:1)时,所得聚氨酯泡沫材料的LOI指数能达到26.3%,最大热降解速率降低了1.52 %/min,残炭量提高了23.52个百分点,泡沫试样的泡沫孔隙数量和面积进一步减少。因此,本实验制备出一种具有优异阻燃性能的聚氨酯泡沫,其在建筑领域、交通领域、食品保温领域有广阔的应用前景。  相似文献   

17.
使用含氮结构型阻燃聚脲多元醇对阻燃高回弹聚氨酯泡沫的挥发性进行了研究.考察了配方中聚脲多元醇、催化剂、泡沫稳定剂、阻燃剂对泡沫挥发性的影响。研究结果表明,使用聚脲多元醇、反应型催化剂、低挥发性泡沫稳定剂生产的阻燃高回弹聚氨酯软泡较普通阻燃高回弹聚氨酯软泡具有较低的VOC(挥发性有机物)、甲醛释放量和雾化值。  相似文献   

18.
利用精制后的碱木质素部分代替聚醚多元醇制备碱木质素基聚氨酯泡沫材料(PUF/木质素)。将次磷酸铝(AHP)作为阻燃剂添加到材料中制备PUF/木质素/AHP材料。通过极限氧指数(LOI)测试PUF/木质素/AHP材料的阻燃性能,通过热重分析(TG)研究了材料的热降解行为和成炭性能,通过锥形量热(CONE)测试和扫描电子显微镜(SEM)分别研究了PUF/木质素/AHP材料的燃烧行为和残炭的表面形貌。结果表明:当碱木质素添加量为聚醚多元醇的5%、AHP的添加量为30%时,PUF/5%木质素/30%AHP材料的LOI值达到了25.6%,同时降低了材料的热分解速率和热释放量,促进了材料的成炭。当AHP受热分解时,产生的PO自由基会捕捉材料燃烧时产生的氢氧自由基,从而抑制燃烧反应,同时产生磷酸铝和焦磷酸铝,形成致密的炭层阻隔物质和能量的传递,阻止材料进一步燃烧,从而提高材料的阻燃性能。  相似文献   

19.
牛力  李旭  王佳楠  刘志明 《塑料》2020,49(1):19-22
对精制后的碱木质素进行羟甲基化改性,再利用改性后的羟甲基化碱木质素部分替代聚醚多元醇,采用一步发泡法与聚合MDI制备了羟甲基化木质素基聚氨酯泡沫材料。将次磷酸铝(AHP)作为阻燃剂添加到泡沫中制备了阻燃碱木质素聚氨酯泡沫,通过极限氧指数(LOI)测试分析了羟甲基化木质素基阻燃聚氨酯泡沫的阻燃性能。利用热重分析(TG)和扫描电子显微镜(SEM)分别研究制得泡沫的热降解行为、成炭性能和残炭形貌。实验结果表明,当羟甲基化碱木质素替代聚醚多元醇的量为60%,次磷酸铝的添加量为30%时,碱木质素聚氨酯泡沫材料的极限氧指数(LOI)值达到了27.5%。因此,羟甲基化碱木质素和次磷酸铝使泡沫在燃烧时能更好的形成炭层,从而有效地隔绝空气,降低热传递,提高了材料的阻燃性能。  相似文献   

20.
结构型含磷氮元素阻燃聚氨酯软质泡沫塑料的研制   总被引:4,自引:0,他引:4  
以嘧胺、甲醛、三氯氧磷和氧化乙烯类化合物为主要原料,合成出含有三嗪环和环状磷酸酯结构的新型阻燃聚醚多元醇,IR 谱图证实了其结构。用此阻燃聚醚多元醇与TDI通过一步法发泡工艺制成,分子结构型阻燃聚氨酯泡沫塑料,对其配方及性能进行了测试研究,最大极限氧指数达29.3 ,拉伸强度0.56MPa ,伸长率158 % ,密度35kg/m2 ,该软泡沫塑料避免了添加型阻燃软泡沫塑料存在的稳定性差,阻燃剂分布不均等弊病,而且发泡工艺简单,设备投资少,易于操作管理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号