首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a Lead Coolant Test Facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements are identified in this paper:
Develop and demonstrate feasibility of submerged heat exchanger
Develop and demonstrate open-lattice flow in electrically heated core
Develop and demonstrate chemistry control
Demonstrate safe operation
Provision for future testing
Across these five broad areas are supported by twenty-one specific requirements. The purpose of this facility is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420 °C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7 M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.  相似文献   

2.
3.
4.
5.
6.
7.
Among the next generation of nuclear reactors, well-known as Gen-IV, the LFR (Lead Fast Reactor) is one of the most promising advanced reactor able to comply the principles of sustainability, economics, safety and proliferation resistance. The ELSY project (European Lead-cooled SYstem), funded by the 6th European Framework Programme, aims at investigating the technical/economical feasibility of a high power lead fast reactor with waste transmutation capability.Several innovative design solutions have been proposed at system level and some of them regard the core region with open-assemblies that represents the reference option. To support the design phase and the safety assessment of ELSY, the thermal-hydraulic code RELAP5, modified to treat heavy liquid metals, has been taken into account.The paper deals with the development of the ELSY thermal-hydraulic and point kinetic model for RELAP5 focusing the attention at core assembly level to verify that the temperatures at nominal power conditions stay within the safety limits both in Beginning-of-Cycle (BOC) and in End-of-Cycle (EOC) conditions. Moreover, in order to have a first evaluation of the system behavior in accidental conditions, an Unprotected Loss-of-Flow Accident (ULOF) simulation at BOC has been analysed and discussed.

List of acronyms

ADS
Accelerator Driven System
BOC
Beginning-of-Cycle
DEC
Design Extension Condition
EFIT
European Facility for Industrial Transmutation
ELSY
European Lead-cooled SYstem
EOC
End-of-Cycle
FA
Fuel Assembly
FP6
6th Framework Programme
Gen-IV
Generation IV (four)
GESA
Gepulste ElektronenStrahlanlage (Pulsed Electron Beam Facility)
HX
Heat eXchanger
IC
Isolation Condenser
LFR
Lead Fast Reactor
LMFR
Liquid Metal Fast Reactor
PDS-XADS
Preliminary Design Studies on eXperimental ADS
RVACS
Reactor Vessel Air Cooling System
ULOF
Unprotected Loss-of-Flow
W-DHR
Water Decay Heat Removal
  相似文献   

8.
This paper summarizes various unusual trends in the critical heat flux (CHF) that have been observed experimentally in tubes or bundle subassemblies. They include the following:
Occurrence of a minimum in the CHF vs. quality (X) curve at high flows - leading to an initial upstream CHF occurrence in uniformly heated channels. This phenomenon has been observed at high flows in both water and Freon.
Occurrence of a limiting quality region on the CHF vs. X curve where the CHF drops by 30-90% for a nearly constant quality. This is thought to correspond to the boundary between the entrainment controlled and the deposition controlled region and causes problems for prediction methods of the form CHF = f(X).
Impact of flow obstructions on the occurrence of upstream CHF and the limiting quality region. The additional mixing by grid spacers or bundle appendages results in a more homogeneous phase distribution, and diminishes the effects of flow regime/heat transfer regime transitions responsible for some of the unusual CHF trends, and results in a more gradually decreasing CHF vs. X curve.
Absence of a CHF temperature excursion at high flows and high qualities - this is found to be caused by a change in slope of the transition boiling part of the boiling curve from a negative value (usual trend that results in a temperature excursion) to a positive slope.
Gradual disappearance of the sharp temperature excursion at CHF when increasing the pressure towards and beyond the critical pressure - no drastic change is observed in the axial temperature distribution of a heated tube experiencing CHF when, for constant mass flux and inlet temperature, the pressure is gradually increased from subcritical to supercritical.
CHF fluid-to-fluid modelling: differences in CHF trends at certain conditions between refrigerants and water at equivalent conditions.
The mechanisms responsible for these trends and the implications for bundle geometries are discussed.Concerns regarding the reported uncertainty of predicted CHF values and the range of application of CHF prediction methods are also discussed.  相似文献   

9.
10.
11.
12.
13.
14.
The plastic collapse and LBB behavior of statically indeterminate piping system were investigated in this study, compared with those of the statically determinate piping system. Special attention was paid to evaluate the crack opening displacement after a crack penetrated wall thickness. The main results obtained were as follows:
1. The reduction of ultimate strength caused by a crack was relatively small in the statically indeterminate piping system. The main reason is thought to be that a sufficient redistribution of the bending moment occurs in this system.
2. A method to evaluate the crack opening displacement after crack penetration in a pipe with a non-penetrating crack was proposed. From this method, it was known that the crack opening displacement could be evaluated by using the incremental plastic rotation angle.
3. The acceptable defect size considering the deformation of a pipe was estimated by comparing the plastic moment at the defective part and the gross yielding moment at the non-defective part.

Article Outline

1. Introduction
2. Theory
2.1. Evaluation of plastic collapse load
2.2. Method for predicting COD
2.3. Net-section stress approach in pipe
3. Material and testing procedure
4. Test results and consideration
4.1. Plastic collapse and LBB behavior
4.2. Evaluation of COD
4.3. Gross yielding in pipe section
5. Conclusion
Appendix A. Nomenclature
References

1. Introduction

The structure integrity and reliability are required on nuclear piping systems, high-pressure vessels and LNG tanks and so on. Thus, in order to prove the structure integrity and reliability and to prevent a severe accident, attention is paid to the LBB design method on which various studies have been occurred. When the LBB concept is applied to such energy-related plants, it requires not only a piping fracture analysis but also a leakage analysis in crack parts of piping system. In particular, the leakage analysis is directly related to the evaluation of COD (Crack Opening Displacement). Studies on the piping fracture and the evaluation of COD due to cracks in structure have been mainly performed on statically determinate systems (Liu et al., 1996). As a result, many useful results were reflected on the standards to improve designs and inspections design or inspection. However, it is essential to investigate statically indeterminate systems, considering that most piping systems of energy-related plants consist of statically indeterminate ones ( Liu and Ando, 1996a). Liu et al. have made it clear that the statically indeterminate system had a higher safety margin in the viewpoint of the LBB concept than the statically determinate system from a series of studies on the plastic collapse behavior and LBB characteristic of a statically indeterminate system. However, proof from experiments has not been found for the LBB characteristics of the statically indeterminate system. Therefore, the LBB behavior in the statically indeterminate piping system was evaluated by comparing that of the statically determinate piping system from a series of experimental results.Furthermore, on the LBB evaluation, it is essential to estimate COD or COA (Crack Opening Area). The method of COD or COA evaluation has been established on the pipe, including a fully through-wall crack circumferentially. But if the LBB design method is considered, it is natural that a non-penetrating crack penetrates during a loading, then the contents leak than a fully through-wall crack is assumed initially. For this purpose, this study describes an approach to predict COD when a non-penetrating crack penetrates during a loading in pipe was proposed in this study.

2. Theory

2.1. Evaluation of plastic collapse load

The evaluation of plastic collapse load was based on the plastic design method (Liu and Ando, 1996b). The selected case in the present study was the system fixed at one end and simply supported at the other. The corresponding plastic collapse model obtained from this case is illustrated in Fig. 1. From Fig. 1, the evaluation value of plastic collapse load (PC) can be drawn from the following relation, respectively.  相似文献   

15.
16.
17.
A large number of experiments have been performed in many laboratories in the world with the aim to investigate the physico-chemical effects induced by fast ions irradiating astrophysical relevant materials. The laboratory in Catania (Italy) has given a contribution to some experimental works. In this paper I review the results of two class of experiments performed by the Catania group, namely implantation of reactive (H+, C+, N+, O+ and S+) ions in ices and the ion irradiation induced synthesis of molecules at the interface between water ice and carbonaceous or sulfurous solid materials. The results, discussed in the light of some questions concerning the surfaces of the Galilean moons, contribute to understand whether minor molecular species (CO2, SO2, H2SO4, etc.) observed on those objects are endogenic i.e. native from the satellite or are produced by exogenic processes, such as ion implantation.The results indicate that:
-
C-ion implantation is not the dominant formation mechanism of CO2 on Europa, Ganimede and Callisto.
-
Implantation of sulfur ions into water ice produces hydrated sulfuric acid with high efficiency such to give a very important contribution to the sulfur cycle on the surface of Europa and other satellites.
-
Implantation of protons into carbon dioxide produces some species containing the projectile (H2CO3, and O-H in poly-water).
-
Implantation of protons into sulfur dioxide produces SO3, polymers, and O3 but not H-S bonds.
-
Water ice has been deposited on refractory carbonaceous materials: a general finding is the formation of a noteworthy quantity of CO2. We suggest that this is the primary mechanism to explain the presence of carbon dioxide on the surfaces of the Galilean satellites.
-
Water ice has been deposited on refractory sulfurous materials originating from SO2 or H2S irradiation. No evidence for an efficient synthesis of SO2 has been found.
  相似文献   

18.
The code system, SEMER, was recently developed to evaluate the economic impact of various nuclear reactors and associated innovations. Models for nearly all fossil energy-based systems were also included to provide a basis for cost comparisons.Essentially, SEMER includes three types of model libraries: the global model, for a rapid estimation of various nuclear and fossil energy-based systems, the detailed models, for the finer cost evaluation of individual components and circuits in a PWR type of reactor and the fuel cycle models, for PWRS, HTRs and FBRs, allowing the cost estimations related to all the steps in the nuclear fuel cycle, including reprocessing and disposal.This paper summarises our on-going investigations on new developments in, and on the validation of, the SEMER system.Details of the modelling principles, and the results of validation carried out in the context of an EDF/CEA Joint Protocol Agreement, are also presented.First results of this validation are highly encouraging:
• Relative errors for the total kWh or overnight and investment costs are less than 5% for large PWR systems operating in France or other countries.
• These errors are less than 3% for small-sized compact PWRs and they are of the order of 4–7% for HTRs (as compared to IAEA estimations).
• For fossil energy-based power plants, the relative error, even with slightly different cost breakdown between SEMER and that of existing installations, is from 5 to 20%.
• Similarly, errors on the nuclear fuel cycle costs are about 1–4%, compared to published reference values.

Article Outline

1. Introduction
2. The models
2.1. The global models
2.2. The detailed models
2.3. The fuel cycle model
3. Cost modelling principles
3.1. Input data and output
3.1.1. Input data
3.1.2. Output
3.1.3. Interest during construction
3.2. An illustrative example of power cost calculations
4. The fuel cycle model
4.1. An illustrative example of fuel cycle calculations
5. Validation
5.1. Validation results for nuclear reactors
5.2. More recent validation of operating power plants
5.3. Circuits, tubes and components
5.4. Fuel cycle costs comparisons
6. Conclusions
References

1. Introduction

This paper describes some of the salient features of the economic evaluation models, integrated in CEA’s code system, SEMER (Système d’Evaluation et de Modélisation Economique de Réacteurs).The basic aim of this development is to furnish top management and project leaders a simple tool for cost evaluations enabling the choice of competitive technological options.In the particular context of CEA’s R&D innovative programme, it was imperative to include this economic dimension in order to assess the economic interest of the proposed innovations and to search for other promising areas of R&D, leading to nuclear power cost reductions.SEMER is actually used in the form of a totally machine-independent and user friendly interface in the JAVA language.

2. The models

There are three distinct categories of models in the SEMER system.

2.1. The global models

These models are designed for a quick overall economic estimation. Current version of SEMER includes models for:
Nuclear power plants, such as PWR of the 1400 MWe type (double confinement and four loops), PWR of the 900 MWe type (single confinement, three loops), HTGR (high temperature, gas-cooled reactor), LTR (integral nuclear reactor for heat production), NP (compact PWR) and PWR-C (modular integral PWR such as the SIR concept).
Conventional, fossil energy-based power plants, such as pulverised (or fluidised bed), coal-fired plant, with desulphurisation treatment, oil-fired plant, gas-fired plant and diesel plants of all types. Also included are gas turbine plants, plant with a simple gas turbine, plant with a combined cycle gas turbine (“indoor” and “outdoor” constructions).

2.2. The detailed models

This option allows detailed cost estimations by individual modelling of reactor components, circuits and associated buildings, etc. In the present version, only the following models for PWR are available:
Reactor components, such as civil engineering of associated buildings and structures, reactor vessel, steam generator with U-tubes, steam generator with straight tubes, the pressuriser, primary circuit pumps, the travelling crane, cooling tower, cooling tower with mechanical ventilation, turbine-driven pumps, pump motors, centrifugal pumps, air ejectors, heat exchanger casing, special tubes in stainless steel and special tubes in black steel, with internal coating in stainless steel.
Reactor circuits, including: (1) basic circuits, such as primary circuit connecting the core, pressuriser, primary pumps and steam generator and secondary circuit connecting the steam generators and turbines; and (2) auxiliary circuits, such as steam generators blow-off circuit, steam generator emergency feed-water circuit, confinement spray system, chemical and volumetric control system, emergency core cooling system, component cooling system, water make-up and boron circuit, nuclear sampling system, drain, vent and exhaust circuits, residual heat removal system, effluent control and rejection system and diverse other circuits inside and outside the reactor building.
For the economic evaluation of an innovative PWR, the detailed models allow to take into account the specificities of the new concept and thus bring corrections to the global model, available in the SEMER library and considered having the closest analogies to the innovative PWR to be evaluated. This approach was used in Nisan et al. (2002) to evaluate the AP-600.

2.3. The fuel cycle model

In addition to the above, SEMER also incorporates a detailed model for the fuel cycle cost calculations of a nuclear reactor, treating all the stages of the nuclear fuel cycle from ore extraction to ultimate disposal, with the following options:
• Uranium oxide (UOX) cores.
• 100% mixed, uranium–plutonium oxide (MOX) cores.
• Cores with first loading in UOX, then equilibrium core in MOX.
• Mixed cores with x% MOX fuelled assemblies (under development).
• HTR cores and fast reactor (EFR type) cores.
Several options regarding the treatment of the fuel cycle front- and back-ends are also available:
• Global treatment as in the IAEA WREBUS study (IAEA, 1992).
• Detailed treatment as in the OECD study (OECD, 1994). This is the default option.
• A combination of the above, with a semi-detailed calculations, including the specific treatment and costs for B and C type of wastes, as used by the French Ministry of Industry, DIGEC and by EDF (DIGEC, 1997).
• The CEA model, derived from feed-back of experience for front- and back-end operations.
It should be noted that the standard OECD option includes all the steps in the fuel cycle from the mine to final disposal. The WREBUS option only considers a global value for the fuel cycle back-end. The EDF model (detailed in Table 10) is in between. Finally, in the CEA model, all the costs concerning the front-end, the fabrication and enrichment and the back-end (reprocessing, then final disposal) are expressed as polynomial expressions derived from the costs of a large number of real cases.

3. Cost modelling principles

The basic principle governing the development of models in the SEMER system is the fact that, for most projects, especially in their preliminary phases, it is sufficient to first make a relative cost estimation by the simplest and fastest methods available. The results obtained are then further refined in the final stages of the project when relevant choices of options and technologies are almost fixed. The only condition is that consistent estimating techniques be used so that alternatives can be compared on the same basis, and comparisons can also be made between competing projects.This principle was first used in the chemical and petrochemical industries where continued development over several decades has produced simple but powerful methods for cost evaluations (Popper, 1970).These methods were adapted to nuclear reactors and further developed at CEA during the last 20 years. They have been successfully applied, in particular for the cost assessment of nuclear submarine reactors, operating large-sized PWRs, new small- and medium-sized reactor concepts as well as for a variety of technologies and components, utilising nuclear or fossil energies.The basic steps involved in the development of such methods are:
1. The power plant cost is first carefully decomposed into several “cost modules”. This method was first proposed in the early 1970s for chemical plant cost estimations (Guthrie and Grace, 1970). An estimating module represents a group of cost elements (or items) having similar characteristics and relationships. Each of these elements can be made to represent a given function in the overall module (e.g. site acquisition and development, major process equipment such as a heat exchanger, a pressure vessel, etc.).
2. A detailed study is then made to make an inventory of the various generic models1 which bear a sufficient number of analogies with the module that one would like to assess. Thus, for example, the cost evaluation model for the PWR pressure vessel was developed from the available models for the stainless steel lined high pressure reservoirs used in the industry.
3. The cost Ci of an element i in a given module is then mathematically expressed in the form of simple equations of the type:
(1)
Ci=Ai+(Bi×Pin)
where A, B and n are the so-called “adjustment coefficients” and P is power or capacity (electric power of a reactor, for example).
4. The adjustment coefficients are then obtained by applying well-known mathematical techniques (a least-squares fit of a data base, for example) for a large number of values for P.
5. To qualify the algorithms, developed as above, the models are more finely tuned from the results of published data, taking into account the use of field materials, field labour and other industrial factors.
6. Finally, a validation of the model is undertaken by comparison with the “real” values from existing installations.
The SEMER system was basically developed for the assessment of innovations in reactor systems, made in the context of the French Nuclear Power Programme. The adjustment coefficients were then obtained from available data bases for experimental, operating or nuclear submarine PWRs and the fossil energy-based electricity producing systems. This is the main reason that the basic costs of most items need to be expressed in French Francs (FF) which are then converted into Euros or US dollars. Some information on other reactor types, e.g. HTRs, was also obtained from external sources such as the IAEA. In its current form, SEMER remains nonetheless highly oriented towards PWR type of technology.However, because of the inherent generic nature of the built in models, they can be easily adapted to treat other reactor systems. One could, for example, use the model for combined cycle gas turbines, to develop part of the models for HTRs with direct cycles.

3.1. Input data and output

3.1.1. Input data
Efforts were made to harmonise the input and output data for all power plant types, with only minor and easily comprehensible modifications in the input data.Examples of input data panels, for the global models of a nuclear reactor and a fossil fuelled plant, are summarised in Table 1.  相似文献   

19.
20.
If a flow obstacle, such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions, a spacer has a cooling effect, and under other conditions, the spacer causes dryout of the cooling water film on the heating surface. The burnout mechanism, which always occurs upstream of a spacer, however, remains unclear.In a previous paper [Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81–90], we reported that the disturbance wave has a significant effect on dryout and burnout occurrence and that a spacer greatly affects the behavior of the liquid film downstream of the spacer.In the present study, we examined in detail the influences of a spacer on the heat transfer and film thickness characteristics downstream of the spacer by considering the result in steam–water and air–water systems. The main results are summarized as follows:
(1) The spacer averages the liquid film in the disturbance wave flow. As a result, dryout tends not to occur downstream of the spacer. This means that large temperature increases do not occur there. However, traces of disturbance waves remain, even if the disturbance waves are averaged by the spacer.
(2) There is a high probability that the location at which burnout occurs is upstream of the downstream spacer, irrespective of the spacer spacing.
(3) The newly proposed burnout occurrence model can explain the phenomena that burnout does occur upstream of the downstream spacer, even if the liquid film thickness tF m is approximately the same before and behind the spacer.

Article Outline

1. Introduction
2. Experimental apparatus and procedure
2.1. Experimental apparatus
2.2. Definition of burnout occurrence on the heating tube
2.3. Experimental conditions
2.4. Current burnout occurrence model in a BWR
3. Experimental results and discussion
3.1. Influence of the spacer on heat transfer characteristics
3.2. Influence of the spacer on film thickness characteristics
3.3. Proposed burnout occurrence model
4. Conclusion
References

1. Introduction

Nuclear power stations must be designed to be highly efficient as well as to operate safely. Based on an experimental result obtained by using a large-scale apparatus, the thermal design of a boiling water reactor is restricted by heat removal from nuclear rods in close vicinity to cylindrical spacers that support the nuclear rods (Arai et al., 1992). However, since this mechanism is not yet fully understood, clarification of the burnout mechanism near the cylindrical spacers in the boiling water reactor is necessary. Several studies, including Yokobori et al. (1989), Sekoguchi et al. (1978) and Feldhaus et al. (2002), have been performed in order to clarify the burnout occurrence mechanism. Although, generally the flow pattern is essentially in two-phase flow, most of the above-mentioned studies did not observe the flow pattern. Few studies have attempted to clarify in detail the burnout or dryout occurrence mechanisms near the spacer by observing the boiling two-phase flow behavior.Based on the information described above, Fukano et al. (1996) made a detailed observation of the behavior of boiling two-phase flow near a flow obstruction in order to clarify the mechanism of dry patch occurrence by placing a cylindrical flow obstruction in a vertical annular channel. The flow obstruction was designed to simulate a cylindrical spacer in an actual boiling water reactor. Furthermore, Fukano et al. (1997) performed an experimental investigation on the effects of the geometry of the spacer, i.e., a grid spacer or a cylindrical spacer, on dry patch occurrence. They clarified that dry patches occur more frequently when the grid spacer is used because the wedge-like gaps formed within the grid spacer hold water near the narrowest region inside the spacer gap through surface tension. Accordingly, typical drainage occurs just beneath the spacer, when the heat flux is not so large (Fukano et al., 1980).Furthermore, the axial distance between the spacers has a strong effect on the critical heat flux near the spacer. In an actual nuclear reactor, for example, the distance of 500 mm was adopted. Fukano (1998) tried to clarify the effect of the existence of an upstream spacer on the dry patch occurrence on the heating surface around a downstream spacer by observing the flow configuration near both spacers in detail. Moreover, Fukano et al. (2003) performed a detailed investigation of the wall temperature fluctuation characteristics near the cylindrical spacer for the case in which repeated dryout and rewetting of the heating surface occurred. As a result, it was clarified that the mechanism of dry patch occurrence was due to the evaporation of a water film that originated primarily from the drainage of water film in the case of low heat flux, and was due to the evaporation of the water film (the base film) in the disturbance wave flow in the case of high heat flux. Fukano et al. (2002) also clarified the influence of the spacer in transient two-phase flow, i.e., the influence on the transition of the operating point on parameters, such as the heat flux, the mass flow rate and the inlet quality of the test section. As a result, even if the flow pattern changes rapidly by the stepwise change of an operation parameter, the flow transition proceeds safely, provided that the change causes an increase in the vapor velocity, i.e., an increase in the shear force acting on the water film. On the other hand, if the change causes a decrease in the vapor velocity, transient burnout may occur, even when the operation condition after the change is less than the steady burnout condition. Furthermore, Mori and Fukano (2003) performed a detailed observation of flow phenomena near a spacer using a high-speed video camera for the case in which burnout occurred in a steady boiling two-phase flow. As a result, it is clarified that the disturbance waves have a strong effect on burnout occurrence, that is, the interval of the disturbance waves is very important because the dry patch always occurs at the base film between the neighboring disturbance waves. In addition, Mori and Fukano (2006) clarified statistically the relationship among the interval of the disturbance waves, dryout of the thin water film and burnout of the heating tube for the case in which a spacer is placed in an annular channel.The main purpose of the present paper is to clarify in detail the influence of a spacer on the heat transfer and film thickness characteristics downstream of a spacer. We will propose later herein a new burnout occurrence model in consideration of the unsteady nature of two-phase flow.

2. Experimental apparatus and procedure

2.1. Experimental apparatus

Fig. 1 shows a schematic diagram of the experimental apparatus of the steam–water system. Test section (1) was placed vertically in a closed forced convection loop. A working fluid, distilled water, was supplied by a feed pump (7) into the test section after passing through a pre-heater (10), where the temperature of the working fluid at the inlet of the test section, i.e., the degree of inlet subcooling was controlled. The two-phase mixture was separated into water and steam in a separator (2) downstream from the exit of the test section. Both the water and the steam were collected in a reservoir (6) after being cooled to below saturation temperature in each condenser (5) in order to prevent cavitation in the feed pump (7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号