首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
粉末高温合金中夹杂物特性及其质量控制   总被引:4,自引:0,他引:4  
研究了粉末高温合金中夹杂物特性及对材料断裂行为的影响 ,研究内容包括 :夹杂物的性质及来源、夹杂物在材料变形过程中的形变特征、夹杂物对材料疲劳断裂行为的影响等 ,同时研究了盘件在生产过程中夹杂物质量控制方法 .  相似文献   

2.
本文研究了FGH95粉末高温舍金中夹杂物特性(成分、分类、形貌、尺寸和数量等),及与不同成型工艺的关系,同时研究了合金中夹杂物对合金拉伸、持久和疲劳断裂等力学性能的影响,并提出了制造工艺优选的建议。  相似文献   

3.
采用扫描电镜原位拉伸和原位疲劳的方法,跟踪观察了人工植入Al2O3夹杂物的镍基粉末高温合金P/M Rene95中夹杂物导致裂纹萌生、扩展乃至断裂的过程,结果表明,无论是在单轴拉伸还是低周疲劳实验中,裂纹均首先萌生于脆性非金属夹杂物Al2O3处,大于一定尺寸的夹杂物,还会使该裂纹扩展成为导致合金断裂的主裂纹,从而大大降低合金的屈服强度、断裂强度及低周疲劳寿命.  相似文献   

4.
为了提高高温合金母合金锭的纯净度,本文提出了在高温合金真空熔铸的凝固过程施加旋转磁场的真空电磁净化技术。使用扫描电子显微镜和图像分析仪研究了K417高温合金母合金锭真空电磁净化技术的非金属夹杂物去除机理,结果表明:在K417高温合金母合金锭真空熔铸的凝固过程中施加旋转磁场能够促使非金属夹杂物向母合金锭中心部位快速聚集、变大并上浮到冒口处,最终在切除冒口的同时也将夹杂物从合金中除去。  相似文献   

5.
一、引言 高温合金涡轮叶片一般需承受复杂的应力,除温度变化引起的热应力以外,还有恒定的离心力和热燃气喷射而产生的高频振动力。而高温高周疲劳实验能够较好地模拟后两种应力。对于单晶高温合金,抗高温高周疲劳能力将大大提高,许多研究表明,高周疲劳裂纹源总是发生在晶体材料的不连续处,包括疏松、夹杂和晶界等,比起普通铸造和定向凝固高温合金,单晶高温合金疏松和夹物很少,且不存在晶界,因此疲劳强度极限明显提高。但单晶高温合金疲劳断裂总是呈脆性的,深入研究它的微观断裂机制是非常必要的。本文对在热腐蚀环境下的涡轮叶片用单晶高温合金经高温高周疲劳实验后的断裂特征和微观机制进行研究。 二、实验过程 研究用单晶高温合金的化学成分为(wt%):Cr15.61,Co8.45,W5.74,Al3.80,Ti3.82,Ta1.16,其余为Ni。用选晶方法拉制成单晶试棒,经下列热处理  相似文献   

6.
返回料添加比例对K44合金热疲劳性能的影响   总被引:1,自引:0,他引:1  
研究了返回料添加比例对新型抗热腐蚀高温合金K44热疲劳性能的影响.结果表明:新料和返回料合金试样V型缺口尖端主裂纹扩展长度与热循环次数之间遵循L=bNa规律.新料合金热疲劳裂纹萌生和扩展速率最低,随着合金中返回料比例的增大,热疲劳裂纹萌生速率和扩展速率也增大.热疲劳裂纹萌生于V型缺口尖端附近区域,沿枝晶间、晶界和开裂的碳化物扩展,主裂纹扩展以裂纹尖端连续开裂的形式进行.返回料合金由于氮含量增加导致共晶和夹杂物增多,碳化物聚集块化,加速了热疲劳裂纹的萌生与扩展.合金经热疲劳实验后,裂纹两侧产生氧化带和γ'相贫化带.  相似文献   

7.
选用两种新型试验用钢,分析测定了它们的化学成分、金相组织特征及夹杂物分布形态;通过高频疲劳测定试验比较了它们之间疲劳寿命差异.结果表明:对同种钢而言,缺口系数对疲劳寿命的影响非常大,缺口系数越大,疲劳寿命越小;不同钢之间的疲劳寿命的差异取决于钢中的化学成分及钢中夹杂物.合理地提高材料的合金元素,有效地改善材料的化学成分的配比及适当的热处理工艺可以明显提高材料的强度极限;纯净的钢质量及合理的高强度是提高钢的疲劳寿命的最合理、有效的手段.  相似文献   

8.
本文研究了13Ni(2750MPa 级)马氏体时效钢的疲劳性能及其影响因素。研究结果表明,本合金的单向拉伸疲劳报限为σ(?)的1/4左右。时效条件、变形情况和钢中非金属夹杂物等均影响合金的疲劳性能。  相似文献   

9.
“怎样才算纯潔”这个问题随着含活性元素日增的新型高温合金的发展而日形尖锐。碳化物与非金属夹杂物不利于加工,并且从化学平衡的观点看来影响着工作条件和合金成份的效果。衡量纯潔度可用三个方法:(?)修正过的A.S.T.M.夹杂物等级,夹杂物频率严重程度等级与金相分类。 使用真空熔煉高温合金的燃气轮机工业和有关方面关于材料的纯潔度存在不少的问题。对于真空熔煉的合金尚有纯潔度的问题说来似乎是异常的。本文系站在用  相似文献   

10.
粉末高温合金中夹杂物特性及与不同成型工艺的关系   总被引:1,自引:0,他引:1  
全面研究了FGH95粉末高温合金原始粉末和粉末处理过程中夹杂物的性质(成分、分类和形貌),分析了其数量和来源,研究了夹杂物在不同成型工艺下的变形特征,讨论了解决夹杂物问题的方法.  相似文献   

11.
The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the high-cycle regime up to 107 cycles of loading. The fracture surfaces were observed by field emission scanning electron microscopy (FESEM). It was found that the size of inclusion has significant effect on the fatigue behavior. For AtSI 4340 steel in which the inclusion size is smaller than 5.5 μm, all the fatigue cracks except one did not initiated from inclusion but from specimen surface and conventional S-N curve exists. For 65Si2MnWE and Aermet 100 steels in which the average inclusion sizes are 12.2 and 14.9 μm, respectively, fatigue cracks initiated from inclusions at lower stress amplitudes and stepwise S-N curves were observed. The S-N curve displays a continuous decline and fatigue failures originated from large oxide inclusion for 60Si2CrVA steel in which the average inclusion size is 44.4 pro. In the case of internal inclusion-induced fractures at cycles beyond about 1×10^6 for 65Si2MnWE and 60Si2CrVA steels, inclusion was always found inside the fish-eye and a granular bright facet (GBF) was observed in the vicinity around the inclusion. The GBF sizes increase with increasing the number of cycles to failure Nf in the long-life regime. The values of stress intensity factor range at crack initiation site for the GBF are almost constant with Nf, and are almost equal to that for the surface inclusion and the internal inclusion at cycles lower than about 1×10^6. Neither fish-eye nor GBF was observed for Aermet 100 steel in the present study.  相似文献   

12.
The behaviour of inclusion initiated fatigue was studied for a high strength bearing steel with a bainite micro-structure. The analysis included experiments and numerical simulations. It was realized that the stress-state was multi-axial in the matrix material that met the inclusion also for a uniaxial far field stress. Fatigue initiation risk at the interface between the inclusion and matrix material was therefore predicted with the Findley multi-axial critical plane criterion. The fatigue parameters were determined from independent experiments on smooth specimens with tensile surface stress gradients. Crack growth from the inclusion to final rupture was modelled as a penny shaped crack with closure compensated effective material parameters. The growth simulations suggested that the majority of the fatigue life was consumed as fatigue crack initiation at the non-metallic inclusion.  相似文献   

13.
Axial loading fatigue tests were carried out to study the influence of inclusion on high cycle fatigue behavior of a high V alloyed powder metallurgy cold-working tool steel (AISI 11). The fatigue strength of 1538 MPa with endurance life of 107 cycles were obtained by stair-case method. The fatigue specimens were also subjected to a constant maximum stress of 1650 MPa to investigate the relationship among inclusion origin size (10-30 μm), fish-eye size (70-130 μm) and fatigue life (105-107 cycles). The fatigue life was found to be dependent on the inclusion size and the crack propagating length. A compressive residual stress of 300-450 MPa turned out to be present at the specimen surface, and finally induced the interior failure mode. Further investigation into the correlation between stress intensity factors of inclusion origin and corresponding stages of fatigue crack growth and fatigue life revealed that the high cycle fatigue behavior was controlled by crack propagation. According to the fractographic investigation, two distinct zones were observed in fish-eye, representing Paris-Law and fast fatigue crack growth stage, respectively. Threshold stress intensity for crack propagation of 3.9 MPa√m was obtained from the well correlated line on the ΔKI-log N? graph. The fracture toughness can also be estimated by the mean value of stress intensity factor ranges for fish-eye.  相似文献   

14.
A cumulative fatigue damage model is presented to estimate fatigue life for high‐strength steels in high‐cycle and very‐high‐cycle fatigue regimes with fish‐eye mode failure, and a simple formula is obtained. The model takes into account the inclusion size, fine granular area (FGA) size, and tensile strength of materials. Then, the ‘equivalent crack growth rate’ of FGA is proposed. The model is used to estimate the fatigue life and equivalent crack growth rate for a bearing steel (GCr15) of present investigation and four high‐strength steels in the literature. The equivalent crack growth rate of FGA is calculated to be of the order of magnitude of 10?14–10?11 m/cycle. The estimated results accord well with the present experimental results and prior predictions and experimental results in the literature. Moreover, the effect of inclusion size on fatigue life is discussed. It is indicated that the inclusion size has an important influence on the fatigue life, and the effect is related to the relative size of inclusion for FGA. For the inclusion size close to the FGA size, the former has a substantial effect on the fatigue life. While for the relatively large value of FGA size to inclusion size, it has little effect on the fatigue life.  相似文献   

15.
ABSTRACT In evaluating the giga-cycle fatigue strength of some high strength steels, information on the size distribution of nonmetallic inclusions contained in the material is indispensable. To save time and effort of obtaining such data concerning the inclusions, a convenient dissolution method to evaluate the maximum inclusion size is proposed, in place of a conventional method of measuring the inclusion sizes on many cross-sectional areas. Meanwhile, to save time-consuming work of obtaining giga-cycle fatigue properties of some metallic materials, an intermittent ultrasonic fatigue testing method has also been developed. In the present paper, these two newly developed methods were successfully combined to assess the long life fatigue properties of maraging steels as a function of inclusion size.  相似文献   

16.
Inclusion of fatigue effects in human reliability analysis   总被引:1,自引:0,他引:1  
The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA.  相似文献   

17.
Axial loading fatigue tests of carburized 12Cr steel alloy in long‐life regime were performed under stress ratios of ?1 and 0. Fatigue fracture can be divided into surface failure, interior failure without fine granular area (FGA), and interior failure with FGA. By considering the effects of the tensile limit, the evaluation of maximum crack sizes (inclusion sizes and FGA sizes), and residual stress distribution, the fatigue strength prediction model of carburized 12Cr steel alloy for inclusion‐FGA‐fisheye induced failure in low stress level region can be established. By comparing the predicted results evaluated by generalized extreme values (GEV) with generalized Pareto (GP), the GP distribution is more suitable to predict the fatigue limit of the carburized 12Cr steel alloy. Furthermore, by using the relationship between inclusion sizes and FGA sizes, the fatigue limit prediction model for the design of components can be established, and the result is extremely accurate for the carburized 12Cr steel alloy.  相似文献   

18.
In order to investigate the effects of non-metallic inclusion on the fatigue strength of high-strength steels, in 1963 W.E. Duckworth and E. Ineson conducted fatigue tests using specimens that contained artificially added spherical and angular alumina particles of various controlled sizes. Although the fatigue tests were carried out under the same nominal stresses in rotating-bending and tension-compression tests the fatigue lives of specimens showed a large scatter. They reported in some detail typical complicated aspects of the effects of non-metallic inclusions on the fatigue strength.

In the present study the authors have reanalysed these complicated fatigue data using the prediction equation that was proposed by Murakami et al for the quantitative evaluation of the effects of small defects on fatigue strength. The geometrical parameter that controls the scatter of the fatigue strength is the square root of the projection area √ area and not the shape of the inclusions, whether they are spherical or angular. It is shown from the data from the failed specimens that the fatigue strength of materials containing inclusions larger than a critical size can be predicted by the Vickers hardness (Hv) of the matrix and √ area of the inclusion regardless of the shape.  相似文献   


19.
A computational strategy is developed to characterize the driving force for fatigue crack nucleation at subsurface primary inclusions in carburized and shot peened C61® martensitic gear steels. Experimental investigation revealed minimum fatigue strength to be controlled by subsurface fatigue crack nucleation at inclusion clusters under cyclic bending. An algorithm is presented to simulate residual stress distribution induced through the shot peening process following carburization and tempering. A methodology is developed to analyze potency of fatigue crack nucleation at subsurface inclusions. Rate-independent 3D finite element analyses are performed to evaluate plastic deformation during processing and service. The specimen is subjected to reversed bending stress cycles with R = 0.05, representative of loading on a gear tooth. The matrix is modeled as an elastic–plastic material with pure nonlinear kinematic hardening. The inclusions are modeled as isotropic, linear elastic. Idealized inclusion geometries (ellipsoidal) are considered to study the fatigue crack nucleation potency at various subsurface depths. Three distinct types of second-phase particles (perfectly bonded, partially debonded, and cracked) are analyzed. Parametric studies quantify the effects of inclusion size, orientation and clustering on subsurface crack nucleation in the high cycle fatigue (HCF) or very high cycle fatigue (VHCF) regimes. The nonlocal average values of maximum plastic shear strain amplitude and Fatemi–Socie (FS) parameter calculated in the proximity of the inclusions are considered as the primary driving force parameters for fatigue crack nucleation and microstructurally small crack growth. The simulations indicate a strong propensity for crack nucleation at subsurface depths in agreement with experiments in which fatigue cracks nucleated at inclusion clusters, still in the compressive residual stress field. It is observed that the gradient from the surface of residual stress distribution, bending stress, and carburized material properties play a pivotal role in fatigue crack nucleation and small crack growth at subsurface primary inclusions. The fatigue potency of inclusion clusters is greatly increased by prior interfacial damage during processing.  相似文献   

20.
Contact fatigue is a key feature limiting the service lives and reliabilities of gears. The gear contact fatigue failure mechanism has not been understood fundamentally due to the complexities of structural factors, material properties, and operating conditions. In this work, an integrated finite element model of a megawatt level wind turbine gear is established considering the real gear geometry, material microstructure heterogeneity, existence of nonmetallic inclusion, and the tooth surface roughness. The gear steel material properties are defined based on the crystal elasticity anisotropy framework. The modified Dang Van multiaxial criterion is utilized to estimate the material fatigue failure probability during gear engagement. With the developed model, the roles of microstructure, inclusion, and surface roughness on the gear contact fatigue behaviour are comparatively investigated. Additionally, the influences of different inclusion size and surface roughness profile on gear failure risk are investigated and discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号