首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of abrasive fluidized bed equipment in a broad range of manufacturing processes is reviewed. In particular, applications in deburring and finishing of complex-shaped metal components, in super-finishing of dies for injection molding, in cleaning and polishing of electronic devices, and in surface preparation of tungsten carbide milling tools are reviewed. Attention is focused on the effects of the most important process parameters, such as machining time, abrasive type and mesh size, and flow or jet speed. The extent of material removal and the change in surface roughness as a function of the process parameters are addressed. Selected numerical and analytical models that are useful for automation and control purposes are discussed. Finally, the industrial sustainability of the processes and equipment investigated is highlighted.  相似文献   

2.
This paper deals with the definition of a relatively novel machining technology to finish the internal part of narrow and long tubular parts made from high resistance stainless steel.A hybrid technology, namely, fluidized bed assisted abrasive jet machining (FB-AJM), was developed and a thorough experimental investigation was concurrently performed.First, a systematic approach, based upon design of experiments, was used to examine the influence of leading operative variables on process. Surface roughness and material removal trends consistent with theoretical expectations were found. Subsequently, the machining mechanisms were analyzed in terms of the evolution of roughness and waviness profile. FB-AJM was found to be a not pressure-copying machining technology. Lastly, the uniformity and the precision of machining all around the internal circumferences of the workpieces were checked out to assure the applicability of FB-AJM to process an ever-growing variety of complex shaped components.  相似文献   

3.
A phenomenological model of the three-phase flow inside an abrasive water jet machining cutting head has been developed. Several improvements over previously presented models such as taking into account the abrasive particle size distribution, and the effect of breakage of particles on the energy flux have been made. The model has been validated using an extensive set of experimental data with wide variations in cutting-head geometry, operating pressure, and abrasive mass flow rates. The cross-sectional averaged abrasive particle velocity at the exit of the focussing tube has been predicted with good accuracy over the whole range of experiments. In particular, the Pearson correlation between the model and the experimental results is found to be more than 95%, implying the utility of this model in design.  相似文献   

4.
Abrasive slurry jet micro-machining (ASJM) uses a well-defined jet of abrasive slurry to erode features in a solid target. Compared with abrasive water jet machining (AWJM), the present ASJM system operates at pressures that are roughly two orders of magnitude lower and uses a premixed slurry of relatively low concentration. The objective of the present study was to gain a better understanding of the mechanics of erosion in ASJM by comparing its performance in the micro-machining of holes and channels in borosilicate glass with that of abrasive air jet micro-machining (AJM), a process that is simpler and relatively well understood. A new ASJM system was developed and used to machine blind holes and smooth channels of relatively uniform depth that did not suffer from the significant waviness previously reported in the literature. The effect of particle velocity, particle concentration, jet traverse speed and jet impact angle were examined. A direct comparison of ASJM and AJM results was possible since novel measurements of the crushing strength of the aluminum oxide abrasive particles used in both experiments proved to be unaffected by water. Brittle erosion was shown to be the dominant material removal mechanism in both ASJM and AJM in spite of the significant flow-induced decrease in the local impact angles of many of the particles in ASJM. A new model of the rapid particle deceleration near the target surface helped explain the much smaller erosion rates of ASJM compared with those in AJM. The modeling of the erosion process during the micro-machining of channels showed that the effect of the local impact angle at the leading edge of the advancing jet was much more significant in ASJM than in AJM, primarily due to the narrower focus of the jet impact zone in ASJM. The differences in the water and air flow fields and associated particle trajectories were used to explain the steeper side walls and flatter bottoms of the holes and channels machined with unmasked ASJM compared to those with masked AJM. The respective structures of the water and air jets also explained the much sharper definition of the edges of these features using ASJM compared with maskless AJM. The results of the study show that ASJM can be used to accurately micro-machine channels and holes with a width of 350–500 μm and an aspect ratio of 0.5–1.3 without the use of masks.  相似文献   

5.
A new precision finishing process for complex internal geometries using smart magnetorheological polishing fluid is developed. Magnetorheological abrasive flow finishing (MRAFF) process provides better control over rheological properties of abrasive laden magnetorheological finishing medium. Magnetorheological (MR) polishing fluid comprises of carbonyl iron powder and silicon carbide abrasives dispersed in the viscoplastic base of grease and mineral oil; it exhibits change in rheological behaviour in presence of external magnetic field. This smart behaviour of MR-polishing fluid is utilized to precisely control the finishing forces, hence final surface finish. A hydraulically powered experimental setup is designed to study the process characteristics and performance. The setup consists of two MR-polishing fluid cylinders, two hydraulic actuators, electromagnet, fixture and supporting frame. Experiments were conducted on stainless steel workpieces at different magnetic field strength to observe its effect on final surface finish. No measurable change in surface roughness is observed after finishing at zero magnetic field. However, for the same number of cycles the roughness reduces gradually with the increase of magnetic field. This validates the role of rheological behaviour of magnetorheological polishing fluid in performing finishing action.  相似文献   

6.
In the area of grit blasting, it is well known that microscopically small abrasive debris gets trapped on the surface, and due to impact this grit might cause the surface to fracture and a fraction of it to embed. The same problem appears in abrasive aqua jet machining (AAJM), especially in the so-called deformation wear zone or striation zone. An experimental study was undertaken on a commonly used ductile material, aluminium Al–Mg4, 5Mn, which is used as a base material for manufacturing most of the aircraft/aerospace components. The results indicated that as the depth of cut increases the grit contamination decreases. A comparison was made between straight cutting and oscillation cutting, and it was observed that oscillation cutting is 10 times better than straight cutting for ductile material with respect to particle contamination. Alternative technology is suggested to overcome the grit contamination problem.  相似文献   

7.
Abrasive particle movement pattern is an important factor in estimating the wear rate of materials, especially, as it is closely related to the burring, buffing and polishing efficiency of the abrasive flow machining (AFM) process. There are generally two kinds of particle movement patterns in the AFM process, i.e. sliding–rubbing and rolling. In mechanism, AFM particle–workpiece interaction is taking place in any one or a combination of the possible modes: elastic/plastic deformation by grooving particle movement; elastic/plastic deformation by rolling particle movement; chip formation (micro-cutting) by grooving particle movement, ridge formation by grooving and rolling particle movement, and low-cycle fatigue wear. Grooving particle movement pattern has a greater contribution to wear mass loss of workpiece than rolling mode. Considering the machining efficiency of a machine part is predominantly dependent upon its wear mass loss speed, it can be concluded that particle movement patterns are key parameters to machining efficiency in AFM. In this paper, ellipsoidal particles are investigated to understand particle movement patterns. An analytical model of ellipsoidal geometry to determine particle movement patterns in AFM is proposed with given particle ellipticity, normal load, particle size and material hardness. From the analytical model and particle movement pattern criterion proposed by the present authors, a statistic prediction of particle movement patterns is completed by computer programmed by C++ language. It is found that a seat position of ellipsoid is an easy grooving position for a particle and a large ellipticity value predominantly increases grooving particle numbers. Smaller workpiece hardness, larger particle radius and higher normal load promote grooving of the particles. Sharper particles are much more easy to groove; moreover, grooving pattern will be predominant if particle ellipticity is below 0.8. Increasing workpiece hardness tends to decrease grooving regime while other parameters are fixed in AFM process. In three-body abrasion, hard material paired with soft material will result in more rolling particles. Abrasive contour and material hardness in many variables are two predominant parameters to give distinct influence on particle movement pattern.  相似文献   

8.
This study introduces an abrasive jet polishing (AJP) technique in which the pneumatic air stream carries not only abrasive particles, but also an additive of either pure water or pure water with a specified quantity of machining oil. Taguchi design experiments are performed to identify the optimal AJP parameters when applied to the polishing of electrical discharge machined SKD61 mold steel specimens. A series of experimental trials are then conducted using the optimal AJP parameters to investigate the respective effects of the additive type and the abrasive particle material and diameter in achieving a mirror-like finish of the polished surface. The Taguchi trials indicate that when polishing is performed using pure water as an additive, the optimal processing parameters are as follows: an abrasive material to additive ratio of 1:2, an impact angle of 30°, a gas pressure of 4 kg/cm2, a nozzle-to-workpiece height of 10 mm, a platform rotational velocity of 200 rpm, and a platform travel speed of 150 mm/s. Applying these processing parameters, it is found that the optimal polishing effect is attained using #8000SiC abrasive particles and a 1:1 mixture of water-solvent machining oil and pure water. The experimental results show that under these conditions, the average roughness of the electrical discharge machined SKD61 surface is reduced from an original value of Ra=1.03 μm (Rmax: 7.74 μm) to a final value of Ra=0.13 μm (Rmax: 0.90 μm), corresponding to a surface roughness improvement of approximately 87%.  相似文献   

9.
Abrasive jet micro-machining (AJM) is a promising technique to machine micro-features in brittle and ductile materials. However, the roughness of micro-channels machined using AJM is generally greater than that from other methods of micro-machining such as wet etching. Previous investigators have suggested that the surface roughness resulting from AJM can be reduced by post-blasting with abrasive particles at a relatively low kinetic energy. This approach was investigated in the present work by measuring the roughness reduction of a reference unmasked channel in borosilicate glass as a function of post-blasting particle size, velocity, dose, and impact angle. Post-blasting the reference channels reduced the roughness by up to 60%. It was observed that post-blasting at shallower angles was more efficient, probably due to the increased amount of edge chipping as opposed to cratering, which contributed to the enhanced removal of profile peaks, leaving a smoother surface. Moreover, post-blasting with smaller particles ultimately resulted in smoother surfaces, but at the penalty of requiring a relatively large particle dose, and consequently a significantly increased channel depth, before reaching the steady-state roughness. Hence, finishing with smaller particles until reaching the steady-state roughness may not be practical when a shallow channel is desired. A previously developed numerical model was modified and used to simulate the post-blasting process leading to the creation of smooth channels as a function of particle size, velocity, dose, impact angle, and target material properties. The model simulated both crater formation (due to growth of lateral cracks) and the chipping of facet edges. Comparisons with centerline roughness measurements for channels in borosilicate glass showed that the model can predict the transient roughness reduction with post-blasting particle dose with a 7% average error.  相似文献   

10.
Wear mechanisms of gradient ceramic nozzles in abrasive air-jet machining   总被引:1,自引:0,他引:1  
The nozzle is the most critical part in abrasive air-jet machining equipment. Ceramics, being with high wear resistance, have great potential as abrasive air-jet nozzle materials. In this paper, a (W,Ti)C/SiC gradient ceramic composite was developed to be used as nozzle material. The erosion wear behavior of the (W,Ti)C/SiC gradient nozzle was investigated and compared with a conventional ceramic nozzle. Results showed that the gradient ceramic nozzles exhibited an apparent increase in erosion wear resistance over the conventional ceramic nozzles. The mechanism responsible was found to be that the tensile stresses at the entry region of the nozzle were greatly reduced when compared with the conventional nozzle. This effect may lead to an increase in resistance to fracture, and thus increase the erosion wear resistance of the gradient nozzle. It is indicated that gradient structures in ceramic nozzles are effective to improve the erosion wear resistance of conventional ceramic nozzles in abrasive air-jet machining.  相似文献   

11.
A previous implementation of narrow band level set methodology for the modelling of the surface evolution of masked features in abrasive jet micro-machining (AJM) including the effect of mask erosive wear was extended to include the effect of particle second strikes. The model uses a ray tracing/node tracking algorithm to allow the prediction of the effect of particle ricochets from the mask edges and the sidewalls of the machined feature on the resulting surface evolution of high aspect ratio features. Using the model, for the first time, the prediction of the particle second strike effects from inclined masked features is made possible. When compared to previous models that did not account for mask wear and second strike effects, the present model significantly improved the prediction of measured masked micro-channels machined using AJM in glass. When compared to previous particle tracking computer simulations, the present model was found to have a much shorter execution time, and in some cases also showed an improved prediction. The model can be useful in predicting the feature shape in the AJM of brittle targets for aspect ratios greater than 1, and hence for the micro-fabrication of microfluidic and MEMS devices.  相似文献   

12.
Material removal rate (MRR) of aluminium work piece has been obtained by electrochemical machining using NaCl electrolyte at different current densities and compared with the theoretical values. It has been observed that resistance of the electrolyte solution decrease sharply with increasing current densities. The over-voltage of the system initially increases and then attains a saturation value with increasing current densities. The material removal rate, determined experimentally, almost corresponds to theoretical value with Al3+ state. On the other hand, taking into account over-voltage, MRR comes out be 72%. It appears that removal of a fraction of aluminium occurs in Al+ which subsequently gets converted into Al3+ through a series chemical reactions. A mechanism of such chemical reactions is proposed.  相似文献   

13.
A fluidized bed jet milling process was used to make micro-fine high Nb-containing TiAl alloyed powders from the chippings obtained by crushing the Ti-45Al-8.5Nb-(W,B,Y) ingot.The influences of classifier frequency on powder characteristics were investigated.The results show that the powders with controlled average particle size can be prepared on a large scale.The powders with different sizes are all dominated by γ with a minor amount of α2-Ti3Al.The particle size significantly decreases with the classifier frequency increasing.At a classifier frequency higher than 38 Hz,the average particle size of the ground powders is lower than 25 μm.The powders are composed of two different sizes of particles:shaped particles and some clastic particles,and both particle sizes meet the log-normal distribution.With the classifier frequency increasing,the both sizes decrease; meanwhile,the proportion of the clastic particles gradually increases,and the size distribution span value of the ground powders increases correspondingly.  相似文献   

14.
TiSiN nanocomposite coatings were deposited on stainless steel by chemical vapor deposition in a fluidized bed reactor at atmospheric pressure (AP/FBR-CVD) by reaction of TiCl4 and SiCl4 with NH3 at 850 °C. Coatings were characterized by means of GD-OES, XPS and XRD. TiSiN coatings with a Si content of 9 at.% showed a hardness of 28 GPa (the hardness of TiN and SiNx coatings was around 21 GPa) and a lower oxidation rate under dry air at 600 °C. Our results show for the first time that AP/FBR-CVD can be tuned for the deposition of nanocomposite ceramic coatings.  相似文献   

15.
In this research, the finishing characteristics in a tube's internal finishing process using the method of magnetic abrasive finishing (MAF) combined with electrolysis has been studied. Electrolysis produces an aluminium oxide film that accelerates the removal of the initial hairline morphology on the surface. Subsequently, the film is removed with MAF. This process significantly minimises the surface roughness in a reduced time. The way the finishing conditions, such as the pole–pipe gap, iron particle size and abrasiveness combinations, and processing time affected the surface morphology in the MAF machining process has been particularly examined. The surface roughness was measured and images of the finished surfaces were recorded to study the morphology changes. Prolonged electrolysis finishing was seen to deepen the oxidation film and pits, which adversely affects the surface. This evidence suggests that the pit residuals contribute to higher surface roughness values.  相似文献   

16.
An analytical model to estimate the spatial distribution of erosive efficacy across the mask opening in the abrasive jet micromachining (AJM) of substrates is presented. A closed form analytical expression is derived which allows the erosive efficacy in the vicinity of the mask edge to be estimated as a function of the measured abrasive particle size distribution and the width of the mask opening. This analytical expression was used in a previously developed analytical surface evolution model to predict the time dependent eroding surface profiles of micro-holes and micro-channels of various sizes in glass and polymethylmethacrylate (PMMA), using aluminum oxide abrasive powders of different sizes. Use of the measured powder size distributions in the analytical models resulted in excellent agreement between the measured and model predicted channel profiles. The results of the study demonstrate that the particle size distribution and mask opening width can greatly affect the shape and depth of micro-channel profiles. A major improvement over previously developed models is ease-of-application since the erosive efficacy is given by an analytical expression rather than by the use of a computer simulation or a semi-empirical approach.  相似文献   

17.
In abrasive jet micromachining (AJM), a jet of particles is passed through narrow mask openings in order to define the features to be micro-machined. The size and shape of the micro-machined features depends on the distribution of the particle velocity and mass flux through the mask openings. In this work, a high speed laser shadowgraphy technique was used to demonstrate experimentally, for the first time, the significant effect that the mask opening size and powder shape and size have on the resulting distribution of particle mass flux and velocity through the mask opening. In particular, it was found that the velocity through the mask was approximately constant, but different in magnitude than the velocity in the free jet incident to the mask. The measured mass flux distributions were in excellent agreement with a previously developed analytical model, thus directly confirming its validity. Additional measurements also showed that an existing numerical model could be used to predict the velocity distribution in free jets of spherical particles, and, if a modification to the particle drag coefficient is made, in free jets of angular particles. The direct experimental verification of these models allows for their use in surface evolution models that can predict the evolving shape of features micro-machined using AJM.  相似文献   

18.
TiN/W and TiN/TaN multilayer coatings were deposited on stainless steel by Chemical Vapor Deposition in a Fluidized Bed Reactor at Atmospheric Pressure (AP/FBR-CVD). First, the conditions for the deposition of TiN single layers were investigated, both from the experiment and thermochemical estimations. TiN was deposited from TiCl4 and NH3 at temperatures in the range of 750-950 °C. In the synthesis of multilayers, the W- and Ta-based layers were obtained by reduction of tungsten chloride or tantalum chloride with H2. During the deposition of the TiN layers on top of the Ta layers, Ta reacted with NH3 to form a mixture of tantalum nitrides. Multilayer coatings were characterized by means of GD-OES, AES and XRD. Preliminary results of nanoindentation hardness and oxidation resistance are also presented. Our results show for the first time that AP/FBR-CVD can be tuned for the deposition of multilayered coatings with periodicities in the submicron range.  相似文献   

19.
TiN/SiNx multilayer coatings were deposited on stainless steel by Chemical Vapor Deposition in a Fluidized Bed Reactor at Atmospheric Pressure (AP/FBR-CVD) by reaction of TiCl4 and SiCl4 with NH3 at 850 °C. Due to the immiscibility of crystalline TiN and amorphous SiNx, interdiffusion between layers is avoided even at the high working temperature. The thickness of the individual layer was in the nanometer range. Coatings were characterized by means of SEM, TEM, GD-OES, SIMS, XRD and nanoindentation. A mechanism for the growth rate and diffusion of Ti and Si into the steel is discussed.  相似文献   

20.
随着精密与超精密加工技术的不断发展和成熟,将振动辅助切削技术应用到精密与超精密加工中去已成为发展的一个必然趋势。结合国内外研究人员的研究成果,介绍了超声振动辅助切削技术的基本原理,综述了超声振动辅助切削技术的优势以及研究现状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号