首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alumina composites reinforced with 20 vol% SiC whiskers were exposed to applied stresses in four-point flexure at temperatures of 1000°, 1100°, and 1200°C in air for periods of up to 14 weeks. At 1000° and 1100°C, an "apparent" fatigue limit was established at stresses of ∼ 75% of the fast fracture strength. However, after long-term (>6 weeks) tests at 1100°C, some evidence of crack generation as a result of creep cavitation was detected. At 1200°C applied stresses as low as 38% of the 1200°C fracture strength were sufficient to promote creep deformation and accompanying cavitation and crack generation and growth resulting in failures in times of <250 h.  相似文献   

2.
Whisker-reinforced ceramic composites with enhanced fracture toughness properties are being developed. The creep behavior of such a composite was studied. The introduction of silicon carbide whiskers significantly improves the creep resistance of polycrystaline alumina.  相似文献   

3.
An in situ study is made of crack interfaces in composites of alumina reinforced with silicon carbide whiskers. Both qualitative observations of the whisker-bridging micro-mechanisms and quantitative measurements of the crack profile are made to assess the specific role of the whiskers on the toughness curve ( T -curve or R -curve). At small crackwall separations the whiskers act as elastic restraints to the point of rupture. In some cases the whiskers remain in frictional contact with the alumina matrix over large pullout distances (more than 1 μm) corresponding to a bridging zone approaching 1 mm. The results are discussed in relation to existing models of whisker reinforcement and published long-crack T -curve data.  相似文献   

4.
The fracture toughness of a hot-pressed alumina and that of a hot-pressed alumina/SiC-whisker composite containing 33 vol% SiC whiskers were measured by four-point bending on single-edge precracked bend bars having sharp precracks created by "bridge indentation." Two batches of the composite were examined, one exhibiting a greater degree of whisker clustering than the other. The fracture toughness of the alumina was around 4 MN·m-3/2 whereas that of the composite varied between 5 and 8 MN·m-3/2 depending on microstructural uniformity and crack-propagation direction. Crack deflection in combination with a change in fracture from intergranular to transgranular fracture is proposed as an explanation of the superior fracture toughness of SiC-whisker-reinforced alumina as compared to unreinforced alumina. The composite exhibited a variation in fracture toughness with the crack-propagation direction in identical crack planes. This effect could with good accuracy be described in terms of crack deflection for the composite with uniform whisker distribution. However, in the material with whisker clustering the variation of the fracture toughness with crack-growth direction was greater and could not entirely be explained by crack deflection.  相似文献   

5.
The combined effect of rapid sintering by spark-plasma-sintering (SPS) technique and mechanical milling of γ-Al2O3 nanopowder via high-energy ball milling (HEBM) on the microstructural development and mechanical properties of nanocrystalline alumina matrix composites toughened by 20 vol% silicon carbide whiskers was investigated. SiCw/γ-Al2O3 nanopowders processed by HEBM can be successfully consolidated to full density by SPS at a temperature as low as 1125°C and still retain a near-nanocrystalline matrix grain size (∼118 nm). However, to densify the same nanopowder mixture to full density without the benefit of HEBM procedure, the required temperature for sintering was higher than 1200°C, where one encountered excessive grain growth. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicated that HEBM did not lead to the transformation of γ-Al2O3 to α-Al2O3 of the starting powder but rather induced possible residual stress that enhances the densification at lower temperatures. The SiCw/HEBMγ-Al2O3 nanocomposite with grain size of 118 nm has attractive mechanical properties, i.e., Vickers hardness of 26.1 GPa and fracture toughness of 6.2 MPa·m1/2.  相似文献   

6.
7.
Colloidal techniques have been used to seed SiC whiskers with submicrometer-sized diamond particles. The diamond and SiC particulates are co-suspended in an aqueous medium and cast to form highly porous bodies. Electron cyclotron resonance chemical vapor deposition is used to grow dense, polycrystalline diamond coatings on the seeded whiskers. The low packing density of the cast green bodies allows for infiltration of the growth zone beneath the exposed surface. Electron microscopy is used to estimate the coating thickness and depth of growth infiltration.  相似文献   

8.
Si3N4 ceramics reinforced with SiC platelets were fabricated by hot pressing at 1800°C. The microstructure of the Si3N4 matrix itself was the same with or without the addition of the SiC platelets. However, the mechanical properties of the Si3N4 were changed remarkably by the SiC addition. The fracture toughness and the crack resistance with crack propagation ( R -curve behavior) were improved while the fracture strength was decreased slightly by the platelets. Improvement in crack resistance was attributed to the extensive interaction of cracks with the platelets. The reduction in strength, on the other hand, is believed to be due to cracks associated with weak platelet-matrix interfaces.  相似文献   

9.
SiC whiskers from six manufacturers were characterized by bulk chemical techniques, X-ray photoelectron spectroscopy, X-ray diffraction, and scanning transmission electron microscopy or scanning electron microscopy. Major component (C, Si, and O) surface chemistries of the whiskers fell into four general categories: high oxygen content with oxide resembling a SiO2, high oxygen content with oxide resembling a Si-O-C glass, and hydrocarbon. Several whiskers exhibited significant surface impurities—in particular, Fe. From a morphological viewpoint, significant differences in diameter, debris level, straightness, and types and quantities of defects were observed from one manufacturer to another.  相似文献   

10.
Defects in silicon carbide whiskers made from rice hulls were identified and analyzed using transmission electron microscopy. The whiskers were characterized by a high density of planar faults lying on close-packed planes perpendicular to the whisker axis. The faulting resulted in complex mixtures of β and α polytypes arranged in thin lamellae normal to the whisker axis. Core regions of whiskers were often filled with small cavities ranging in size from 1 to 20 nm. Partial dislocations accompanied the cavities and were analyzed through specimen tilting experiments.  相似文献   

11.
Mechanical Properties of Alumina/Silicon Carbide Whisker Composites   总被引:1,自引:0,他引:1  
The improvement of mechanical properties of Al2O3/SiC whisker composites has been studied with emphasis on the effects of the whisker content and of the hot-pressing temperature. Mechanical properties such as fracture toughness and fracture strength increased with increasing whisker content up to 40 wt%. In the case of the high SiC whisker content of 40 wt%, fracture toughness of the sample hot-pressed at 1900° decreased significantly, in spite of densification, compared with one hot-pressed at 1850°. Fracture toughness strongly depended on the microstructure, especially the distribution of SiC whiskers rather than the grain size of the Al2O3 matrix.  相似文献   

12.
The fracture-toughness-determining mechanism of silicon carbide with additions of yttria and alumina was studied. Observations of indentation crack profiles revealed that significant crack deflection had occurred. Median deflection angles increased with increased volume fractions of the second phases, which was accompanied by increased fracture toughness.  相似文献   

13.
Tensile Creep Behavior of Alumina/Silicon Carbide Nanocomposite   总被引:1,自引:0,他引:1  
Tensile creep and creep rupture behaviors of alumina/17 vol% silicon carbide nanocomposite and monolithic alumina Were investigated at 1200° to 1300°C and at 50 to 150 MPa. Compared to the monolithic alumina, the nanocomposite exhibited excellent creep resistance. The minimum creep rate of the nanocomposite was about three orders of magnitude lower and the creep life was 10 times longer than those of the monolith. The nanocomposite demonstrated transient creep until failure, while accelerated creep was observed in the monolith. It was revealed that rotating and plunging of intergranular silicon carbide nanoparticles into the alumina matrix increased the creep resistance with grain boundary sliding.  相似文献   

14.
Fracture resistance behavior was characterized for SiC-whisker-reinforced alumina composites with porosities ranging from 0.6% to 11.5% The composites were hot-pressed from an Al2O3 powder with 25 wt% SiC whiskers. Strengths of individual specimens were measured in four-point flexure either for natural flaws or for Vickers-indentation flaws as a function of radial crack size. Indentation crack sizes were controlled with indentation loads which varied between 2 and 200 N. A novel method of analysis of these measurements indicates that the fracture resistance of these composites increases as a function of crack extension, a rising R curve. This behavior is interpreted in terms of tractions from both crack-bridging whiskers and interlocking grains, which develop in the wake of the crack tip as it extends. A decrease in porosity raises the level of fracture resistance, but has a negligible effect on the relative steepness of the R curve. The sizes of natural flaws which causes failure in flexure testing were also estimated from analysis of the data.  相似文献   

15.
The response of Al2O3 and Al2O3/SiC nanocomposites to lapping and polishing after initial grinding was investigated in terms of changes in surface quality with time for various grit sizes. The surface quality was quantified by surface roughness ( R a ) and by the relative areas of smooth polished surfaces as opposed to rough as-ground areas. Polishing behavior of the materials was discussed in terms of SiC content and grain size. It was concluded that nanocomposites are more resistant to surface damage than Al2O3, and this behavior does not depend on the amount of SiC in the range 1–5 vol%. SiC addition ≥1 vol% is enough to produce a noticeable improvement in surface quality during lapping and polishing.  相似文献   

16.
Microwave Synthesis of Ultrafine Silicon Carbide Whiskers   总被引:1,自引:0,他引:1  
Silicon carbide (SiC) whiskers were formed by microwave and conventional heating in the present study. SiC whiskers with diameters in the nanometer range were synthesized by reducing silica (SiO2) with various forms of carbon in a microwave furnace. Ultrafine SiO2 powder, char, phenolformaldehyde resin, and carbon black were used as starting materials. The effects of temperature and type of heating on the production of SiC whiskers, as well as the role of carbon, are discussed here.  相似文献   

17.
The mechanical properties of alumina have been successfully improved by adding isolated boron carbide particles of two different shapes. A K Ic of 7.26 ± 0.20 MPa · m1/2 for alumina—boron carbide whiskerlike composites and of 5.27 ± 0.12 MPa · m1/2 alumina—boron carbide shardlike particle composites has been achieved. The fracture toughness of these composites is dependent on the volume fraction of the boron carbide particles as well as their size and shape. The flexural strength is also appreciably enhanced to a constant value with from 5 to 20 vol% boron carbide additions. The whiskerlike particles increase the flexural strength by 25% and the shardlike particles produce a 47% improvement.  相似文献   

18.
The mechanical properties, i.e., Young's modulus, fracture toughness, and flexural strength, of SiC-platelet/Al2O3 composites with two different platelet sizes were studied. Both Young's modulus and the fracture toughness of composites using small platelets (12 μm) increased with increasing SiC volume fraction. Maximum values for toughness and Young's modulus of 7.1 MPa·m1/2 and 421 GPa were obtained for composites containing 30 vol% platelets. Composites fabricated using larger platelets (24 μm), however, showed spontaneous microcracking at SiC volume fractions of ≤0.15. The presence of microcracks decreased Young's modulus and the fracture toughness substantially. Two types of radial microcracks were identified by optical microscopy and found to be consistent with a residual stress analysis. Anisotropy in fracture toughness was identified with a crack length indentation technique. Cracks propagating in a plane parallel to platelet faces experienced the least resistance, which was the the lowest toughness plane in platelet composites with preferred orientation. Enhanced fracture toughness was found in the plane parallel to the hot-pressing direction, but no anisotropy in toughness was observed in this plane. The flexural strength of alumina showed a decrease from 610 to 480 MPa for a 30 vol% composite and was attributed to the presence of the platelets.  相似文献   

19.
Kharb  Sandeep Singh  Antil  Parvesh  Singh  Sarbjit  Antil  Sundeep Kumar  Sihag  Parveen  Kumar  Anil 《SILICON》2021,13(4):1113-1119
Silicon - The machine learning methodology is gaining immense exposure as a potential methodology for solving and modelling the machining behaviour of advanced materials. The present paper deals...  相似文献   

20.
R -curve measurements were performed on a SiC whisker/Al2O3 matrix composite. A controlled flaw/strength technique was utilized to determine fracture resistance as a function of crack extension. Rising R -curve behavior with increasing crack extension was observed, confirming the operation of wake toughening effects on the crack growth resistance. Observations of crack/microstructure interactions revealed that bridging by intact whiskers in the crack wake was the mechanism responsible for the rising R -curve behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号