首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
陈冰 《煤》2014,(5):67-69
为研究浅埋深煤层群下行开采底板卸压规律,通过FLAC和UDEC数值模拟软件模拟分析了上煤层工作面采动过程中底板煤岩体的应力及位移变化规律,得出了底板煤岩体最大卸压深度为40 m;底板裂隙发育呈"O"形圈分布,工作面煤壁处底板煤岩体的纵向裂隙与下层煤体贯通。可为上煤层工作面实施底板瓦斯预抽采,解决开采过程中底板煤层瓦斯渗流至工作面导致的瓦斯超限问题提供理论指导。  相似文献   

2.
为深入研究千米级深井上保护层开采下伏煤层卸压效果,以埋深超千米的平煤十二矿己_(14)-31070工作面为依托,利用YHW19矿用本安型顶底板位移监测仪对其下伏己15煤层的膨胀变形量进行现场监测。结果表明,随着己_(14)保护层工作面推进,下伏己_(15)煤层膨胀变形量经历了初期平缓增长,中期迅速增长,后期趋于稳定3个阶段,且距采面15~45 m区域为保护层开采卸压主要影响区域,该区域内被保护煤层膨胀变形量受开采速度变化影响显著;己_(15)煤层最大膨胀变形平均值为22.4 mm,最大膨胀变形量平均值为6.82‰,被保护层煤层卸压充分;数据点拟合发现,煤层膨胀变形量、单孔瓦斯浓度与瓦斯抽放总量在整个监测周期内均较好符合一元三次多项式的增长趋势,整个回采过程卸压特征明显,卸压效果显著。  相似文献   

3.
采用FLAC模拟软件对上保护层开采过程中下伏煤岩体卸压移动规律进行了模拟,分析了采场底板煤岩层卸压规律分布。通过埋点的方式绘制出底板岩层各测点的应力变化规律图,得到卸压程度与距采场的垂直位移呈反比例关系。采场开挖到100 m时,同一埋深测点垂直应力小于10 MPa的区域占总体开采长度的54%,小于5 MPa的区域达到62%。下伏煤岩体卸压效果良好,有利于卸压瓦斯的运移和抽采,达到消突的目的。  相似文献   

4.
明晰保护层开采卸压空间效应对于优化矿井开拓布局至关重要。以葫芦素煤矿为工程背景,采用分布式光纤传感技术监测煤岩体变形,根据工作面采动空间位置关系及光感数据变化,分析下伏煤岩体的应变分布动态特征,根据上保护层开采过程中下伏煤岩体的应力增高、应力减小、应力恢复的动态变化过程,揭示了不同深度条件下煤岩体应变增减尺度的明显差异性,获得了上保护层开采卸压保护范围参数:倾向和走向的卸压角分别为63.6°和58.7°,卸压滞后距和最大深度分别为14.2 m和28.4 m。研究结果能够为分布式光纤传感技术在保护层开采卸压效应监测中的推广应用提供重要参考依据。  相似文献   

5.
围岩应力、裂隙分布特征是影响突出危险煤层瓦斯抽采效果的重要因素,为优化突出危险煤层群瓦斯预抽方案,以沙曲煤矿近距离煤层群开采为背景,采用相似模拟实验研究了保护层与被保护层双重采动影响下围岩应力-裂隙分布与演化特征。结果表明:3+4号煤初采时,叠加采动的影响下,顶底板卸压程度较一次采动影响时高,但高卸压程度阶段持续长度减少,约105 m,底板最大应力降低值可达12 MPa,是保护层开采时最大应力降低值的1.5倍;进入正常推进阶段,仅距采空区两侧煤壁一定范围L内仍保持较高裂隙发育和应力降低程度,且较保护层开采时L值减小,20~30 m,采空区中部覆岩裂隙再次闭合,围岩应力出现恢复现象;工作面推进距离一定条件下,双重采动影响下顶底板卸压程度及裂隙发育程度较一次采动影响下明显升高;被保护层开采时,3+4号煤同2号煤之间岩层破碎程度最高,裂隙最为发育,覆岩裂隙发育程度随工作面推进距离增加而升高,由于形成稳定顶板结构的随机性,覆岩裂隙频数程台阶式增长。最后将研究结果应用于沙曲煤矿高瓦斯煤层群开采时瓦斯抽采钻孔的布置设计,取得较好的抽采效果。  相似文献   

6.
平顶山天安煤业股份有限公司十二矿己15-31010工作面垂深为1 015~1 130 m,为煤与瓦斯突出煤层,采用开采解放层己14煤层预抽瓦斯是解决己15煤层煤与瓦斯突出的关键技术,因此,针对深部保护层开采过程中下部煤层的卸压效果需进行深入分析。首先根据实际地质条件建立了三维数值模型,计算了己14煤开采过程中下部己15煤层的应力分布。计算结果显示,下部己15煤层在上部保护层开采过程中压力先升高后降低,在采面通过40 m后煤层压力降低至小于1 MPa;但在采空区外侧集中应力区,最大应力值高达42 MPa。现场监测数据显示,采空区下方煤层巷道瓦斯浓度显著增大,但外侧煤层巷道瓦斯浓度变化较小,在上方采面通过40 m后,巷道变形趋于稳定,煤层得到充分卸压。综合数值计算结果和现场监测数据可知,深部近距离保护层开采可以显著降低下部煤层压力,释放煤层瓦斯,但由于集中应力的影响,难以释放位于采空区边缘的下部煤层瓦斯。  相似文献   

7.
付宝杰  涂敏 《煤矿安全》2013,44(3):25-28
针对淮南潘谢矿区煤层条件建立了采动煤岩体计算模型,在分析顶、底板煤岩受力后裂隙分布特征基础上,通过数值模拟的方法研究了保护层A3煤层不同开采厚度时,采空区上方的B4-1煤膨胀变形量及本煤层底板导水破坏深度变化规律;随着开采厚度不断增大,B4-1煤层膨胀变形量呈指数函数趋势增加,并在采厚2~3 m之间有突变过程;在承压水水压降为1.0 MPa情况下,随开采厚度增加,底板采动破坏深度与之呈现对数曲线关系。在保证保护层A3煤层对被保护层B4-1煤层能充分卸压及在承压水体上安全回采的前提下,最后得出A3煤层理论上最佳开采厚度为2.21~4.0 m。  相似文献   

8.
《煤矿安全》2015,(9):39-43
为探索复合煤层群保护层开采过程中,在双重卸压条件下首采保护层和次采保护层过程中卸压特征的不同,采用相似材料实验、计算机数值模拟研究双重卸压覆岩裂隙发育、变形特征和应力分布时空演化规律,通过对比分析表明:在二次保护层开采条件下,覆岩部分裂隙经历了二次扩张,压实,吻合,部分裂隙在空间上往深部发育,裂隙带高度范围增加。应力在首采保护层应力状态的影响下进行再分布,随开采过程形成了5个应力分布区域,分别为工作面超前应力集中区、卸压区、压实区、采空区后方应力集中区、原岩应力区。双重卸压下采空区两端卸压效果更为显著,超前应力集中系数较首采保护层要高,采空区压实速度较首采保护层快,同时被保护层卸压程度和范围均显著增加。  相似文献   

9.
针对平煤股份十矿大埋深弱透气性煤层下保护层开采工程,采用岩石破裂损伤理论和有限元计算方法,研究了被保护层变形规律、应力演化过程、卸压保护范围及瓦斯抽采效果。结果表明,随着保护层工作面的推进,其上覆煤岩体同时发生拉伸应力和剪应力破坏,被保护层大量的裂隙扩展发育,孔隙率大幅提高;随着保护层的开采,被保护层呈现出压缩和膨胀的变化规律,位于保护层采空区中部上方的被保护层变形最大,变形膨胀率最大,因此有利于煤层的卸压增透和瓦斯的抽放;岩石保护层开采后对被保护煤层沿倾斜方向预计保护范围卸压角为78°。工业试验显示:在己15-16-24130岩石下保护层开采后,上覆己15-16煤层变形膨胀率在0.62%~1.54%,己17煤层变形膨胀率在1.71%~3.67%;在预计保护范围线位置测定的煤层最大综合残余瓦斯压力为0.42 MPa,最大残余瓦斯含量为4.210 7 m3/t。证明预计保护范围是可靠的,为平煤十矿下保护层开采区域瓦斯治理技术的推广应用提供了可靠的依据。  相似文献   

10.
关键层结构对保护层卸压开采效应影响分析   总被引:1,自引:0,他引:1  
由于保护层卸压开采,导致覆岩结构的运动,致使上覆煤层变形,产生卸压效应,改变被卸压煤层的透气特性,为卸压瓦斯抽采创造有利条件.采用RFPA2D-Flow数值模拟软件,分析了上覆煤岩层采动裂隙演化、卸压煤层采动应力及位移分布、瓦斯参数变化等规律,结果表明:1)下保护层开采引起的上覆煤岩层采动裂隙集中分布在采场两端部,并呈竖向偏采空区方向发育,离层裂隙发育至被卸压煤层上方;2)开切眼和停采线附近区域顶板裂隙明显发育,卸压开采导致上覆煤层产生膨胀变形,透气性明显增加;3)由于被卸压煤层和保护层之间关键层结构的力学效应,使被卸压煤层透气系数增加幅度不显著,导致抽采孔瓦斯压力降低速度放缓.无关键层结构时,采动影响区内抽采孔瓦斯压力降低较快.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号