首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为解决矿井中等断面巷道交岔点"牛鼻子"楔形墙体支护困难的工程问题,以贵州格目底玉舍煤矿为工程实例,对运输上山与1265运输石门巷道交岔处楔形墙体破坏情况进行力学分析研究,得出了破坏原因,运用钢筋骨架、锚索、锚杆及喷射混凝土封闭围岩技术进行联合支护,结果表明:施工后的"牛鼻子"工程取得良好的支护效果,巷道围岩变形量很小,围岩趋于稳定。  相似文献   

2.
为解决孤岛煤柱下大断面交岔点的支护技术难题,针对某矿南大巷轨道石门交岔点的采矿地质条件和变形破坏特征,分析了孤岛煤柱下大断面交岔点失稳破坏的原因,提出了全断面锚注加固、渐变大断面过渡区棚索耦合支护、牛鼻子分岔段双控锚杆索协同支护、底板高强锚网索支护相结合的复合支护方式。实践结果表明,此类复合支护方式可以有效控制孤岛煤柱下大断面交岔点的围岩变形。  相似文献   

3.
大断面交岔点顶板变形与加固控制技术研究   总被引:4,自引:1,他引:3  
针对交岔点断面大,厚复合顶板,顶板淋水大等实际情况,模拟分析了交岔点巷道围岩变形及应力分布特征,得到在交岔点顶板受较大的水平应力,在交岔点岩柱上垂直应力最大.提出对交岔点项板采用化学加固封堵顶板水和锚索补强支护,能充分发挥锚岩支护体的整体承载能力.工程应用表明,对交岔点顶板采用化学加固和锚索补强支护后,有效地控制了交岔点围岩变形,取得了较好的技术效果.  相似文献   

4.
深部大断面交岔点所处环境复杂,受多次掘进影响,应力集中程度高,支护难度大。通过分析交岔点巷道的受力及其破坏形式,探索采用了加密锚索和对拉锚杆(索)支护技术,提高了交岔点巷道的支护强度和围岩整体性,改善了牛鼻子的结构,保证了牛鼻子的减跨和对顶板的支撑作用,有效地控制了交岔点巷道的变形。  相似文献   

5.
巷道交岔点的数值模拟分析与支护   总被引:1,自引:0,他引:1  
为了解决巷道交岔点处的围岩松散破碎引起的应力分布复杂难以支护的问题,本文采用FLAC3D数值模拟软件对巷道交岔点处加固补强前后的应力分布状态进行了模拟.通过对比分析,加固补强后重新胶结破碎的围岩强度得到了提高,已能承载部分上覆岩层的重量,能有效的阻止应力集中区向围岩深部转移,防止了塑性区的进一步扩大.据此制定了对巷道交岔点处破碎围岩采取浅孔与深孔超前预注浆进行加固,提高围岩强度,进一步安装顶板三维锚索和帮部预应力桁架补强支护的方案,并给出具体的加固补强的支护参数,实践中取得非常良好的效果,研究结果表明,该支护方式在类似复杂条件下的巷道交岔点应用中具有较大的推广价值.  相似文献   

6.
为解决复杂条件下特殊地段软岩巷道支护问题,特别是一些前期受采动影响和后期煤柱长期作用下的大断面交岔点巷道"前掘后修"、"屡修屡坏"的支护难题,基于许疃煤矿-500 m水平轨道石门交岔点巷道的工程实例,采用理论分析与数值模拟的方法,对大断面交岔点巷道低强度围岩的变形影响因素、变形规律、差异化支护技术及其作用和支护效果进行了相关研究,创新性地提出了大断面石门交岔点差异化的支护理念、设计方案及支护技术。工程实践表明,采用五大分区的差异化支护方案后,支护结构的整体承载能力和围岩的自承能力得到提高,交岔点范围内两帮最大位移为102 mm,顶底板最大位移为69 mm,有效控制了特殊地段大断面交岔点巷道低强度围岩的大变形、强流变的失稳问题,保证了巷道围岩的长期稳定。  相似文献   

7.
针对复杂膨胀性围岩条件下交岔点高应力集中区围岩稳定性控制和支护技术难题,通过对交岔点围岩变形表现形式、交岔点围岩变形机理的研究分析,提出了交岔点支护难点及重点。基于围岩控制理论分析,提出了“有限让压的柔性支护+全断面封闭抗压的刚性支护技术”,前期柔性支护采用“高强、高预应力锚杆+锚索+喷浆”联合支护有限度控制围岩变形,允许围岩在可控范围内释放围岩应力|后期通过架设异形支架与支撑架组成的联合支护体并喷射混凝土对交岔点围岩进行全断面封闭抗压支护,有效控制巷道交岔点围岩的变形。确保了交岔点围岩变形的整体可控性、稳定性,达到了预期支护效果。  相似文献   

8.
针对综放开采沿空留巷巷帮煤柱破碎,巷道围岩变形量大,巷道稳定性差的问题,以高河矿W4301工作面为背景,分析了沿空留巷围岩结构特征,提出端头铺设金属网、架后及时打设木点柱和单体柱的切顶和挡杆技术,以及巷道超前顶板锚索补强、密集钻孔切顶、施工柔模混凝土墙充填支护体、架棚支护和煤柱侧巷帮注浆加固综合围岩控制技术。试验表明:充填支护体和锚索受力较为稳定,充填支护体和锚索能够有效承载,沿空留巷巷道两帮最大移近量为207 mm,顶底最大移近量为231 mm,围岩变形不大,控制效果较好。  相似文献   

9.
康志国  吴建帮 《中州煤炭》2016,(9):58-60,64
基于分析巷道交岔点围岩变形破坏机理,对巷道交岔点支护方案进行了比较分析,提出将锚索U钢梁联合支护应用于巷道交岔点,并对巷道交岔点进行了支护设计。方案实施后,利用十字观测法,对巷道围岩变形进行了观测,顶底板最大移近量为70 mm,两帮最大移近量为61 mm。巷道交岔点成型后,顶板无网片开裂现象,锚索U钢梁联合支护效果较好。  相似文献   

10.
《煤矿开采》2016,(6):49-53
对旧采区进行复采时工作面会多次穿越空巷。过空巷时回采巷道与空巷会形成多个交岔点。交岔点附近回采巷道变形大、交岔点处顶板冒落、两帮破碎是复采回采巷道稳定性的主要问题。圣华煤业现场统计观测表明,在超前支承压力作用下交岔点附近巷道变形严重、空巷冒落次数增加,围岩破碎。建立了交岔点围岩应力分布的力学模型,分析了交岔点处围岩应力分布情况,结合现场实测和相似模拟等综合手段给出了交岔点处煤柱压碎区的范围。分析了交岔点处围岩变形与破坏规律,提出了交岔点跨度的计算方法。现场实测表明设计支护强度能够保证巷道支护安全。  相似文献   

11.
为了研究不同因素对综采工作面过空巷时围岩稳定性的影响,采用ANSYS软件建立数值模型,分析不同埋深、不同采高、不同空巷宽度下的空巷顶板沉降、煤壁位移和煤柱切向应力的变化规律.研究结果表明:埋深增加对空巷顶板沉降、煤壁位移和煤柱应力都产生不利影响;采高增大对空巷顶板沉降和煤壁位移影响较小,对煤柱内应力分布影响较大;空巷宽...  相似文献   

12.
为解决邻近工作面采动影响下3213运输巷煤帮变形显著问题,基于3215工作面开采后覆岩的结构特征,确定了基本顶断裂位置,分析了煤柱变形破坏机制,提出了高预紧力和注浆改性的煤帮变形控制思路,根据3213运输巷地质条件设计了技术参数。现场监测结果表明,提出的破碎煤帮稳定性控制技术实施效果良好,可有效控制巷道围岩的稳定性,顶底板移近量降低了81.4%,两帮移近量降低了79.6%。研究成果为类似条件矿井采动影响破碎煤帮变形控制提供指导。  相似文献   

13.
深部矿井中,保持具有长服务年限的开拓巷道围岩稳定性十分重要,而井底车场中常存在两交岔点近距离连接使用的情形,在深部软岩环境下易出现大变形、支护失效等问题。以某煤矿嵌套式变截面巷道交岔点组围岩控制为工程背景,通过现场调研、地质勘查明晰了其具有3.9 m近距离嵌套式连接结构、变截面和大断面的属性及大范围穿层的特性,分析了在深部流变围岩下原支护方案失效的原因。为此进行精细化数值建模分析,得到主巷在三角岩柱侧的应力沿轴向存在“降低—叠加—恢复”的应力分区,两巷交叉角度越小,区域在轴向的距离越长,支承压力峰值及范围越大;变截面段随着截面的逐渐增大,围岩应力集中范围在横向与竖向均增大;塑性区在连接段发生多重叠加,宽度增加两倍以上,同时存在明显的穿层不连续状况,其范围在变截面巷道段及连接段急剧扩大。由此提出以中空注浆锚索为主的分段锚注强化控制方案,并经现场窥视与监测,加强支护有效保障了深井交岔点组围岩的稳定。  相似文献   

14.
采空区下近距离煤层开采时,下层煤回采巷道将受到上煤层采空区遗留煤柱、本煤层相邻工作面动压的影响,针对孙家沟煤矿特厚煤层放顶煤工作面13311回风巷严重的冒顶、两帮内挤和底臌等变形破坏现象,采用现场实测、理论分析及数值模拟等研究方法,探讨了回采巷道失稳机理及主要影响因素。研究表明,13311回风巷变形失稳主要影响因素为迎邻近工作面回采动压掘进、巷道布置方式和巷道支护参数不合理。与上层煤回采巷道垂直布置、巷道支护强度低且迎采动掘进时,下层煤回采巷道容易失稳。为改善13313回风巷围岩稳定性,有效控制巷道变形,根据试验巷道围岩物理力学性质及受力特征,研究提出了有针对性的解决方案:首先改进巷道布置方式,将下煤层回采巷道布置在采空区下,且应距离上煤层采空区遗留煤柱不小于20 m;其次增大护巷煤柱宽度,把区段护巷煤柱宽度增加到20 m以上,减少迎采动掘进动压的影响;最后,采用高预应力全锚索加强支护,提高锚杆锚固段的整体性及其承载能力。据此,在13313回风巷进行了工业性试验并进行了巷道矿压观测,结果表明:经受相邻13311工作面回采动压影响后,区段煤柱整体完整,具有良好的承载性能;锚索受力达到了250~300 kN,约为其破断力的50%,锚索受力增长平稳,较好地控制了巷道离层和围岩变形;13313回风巷顶底板移近量为400 mm左右,两帮移近量为300 mm左右,巷道围岩变形量得到了有效控制,保证了巷道的整体稳定性,取得了良好的支护效果。但是,采用该种巷道布置方式,下层13号煤层13313工作面回采时,因工作面上方11号煤层区段煤柱集中应力的影响,对其顶板和煤壁管理提出了更高的要求,需引起高度重视。  相似文献   

15.
为了解决窄煤柱巷道非均匀大变形控制难题,以丰汇煤矿窄煤柱巷道为工程背景,综合采用现场调研、室内实验、数值模拟和理论分析等方法,研究了不同煤柱尺寸影响下,采动巷道围岩应力与塑性区分布特征;分析了窄煤柱巷道变形破坏规律与采场覆岩结构运动特征,揭示了窄煤柱巷道非均匀变形机理,指出采动应力场叠加,支承压力大;覆岩结构非对称,偏载作用显著;煤柱尺寸小、强度低,难以为顶板提供有效支撑;支护方案对称布置,针对性差,是窄煤柱巷道产生非均匀变形的主要原因。基于窄煤柱巷道围岩控制难点,提出以"改变巷道区域支护方式、增加支护密度、破碎围岩注浆改性"为核心的差异化支护技术,加强对围岩局部大变形的控制,充分发挥围岩的自身承载能力;现场监测表明,窄煤柱巷道在服务期间围岩非均匀大变形得到有效控制,稳定性好;可为同类型巷道围岩的控制提供参考。  相似文献   

16.
为解决顶煤破坏区下破碎围岩巷道变形大、破坏严重的难题,以韩咀矿32103工作面辅运巷为研究对象,采用现场实测及理论分析相结合的方法对巷道围岩应力分布及变形机理进行研究。结果表明:32103辅运巷道顶板存在的顶煤破坏区呈非连续分布,32103辅运巷道围岩应力环境调整及顶煤遗留煤柱与区段煤柱有效承载宽度减小是导致巷道矿压显现明显的主要原因。基于上述探测及理论分析结果,提出以“深浅孔注浆+锚网索”联合支护为主的巷道围岩控制技术及以“架棚+底板卸压”为主的加固技术。现场应用结果表明:采用新支护方案后,32103辅运巷道围岩最大顶底板移近量为70mm,最大两帮收敛量为48mm,支护锚杆未出现破断现象,且锚杆受力与围岩变形均在合理区间,巷道支护效果良好。  相似文献   

17.
针对近距离煤层开采过程中,残留煤柱下部巷道在煤柱集中应力作用下围岩破碎程度高、修复难度大的问题,以山西某矿为工程背景,采用数值模拟的方法分析煤柱底板应力分布规律,结合巷道实际变形特征总结了下位巷道围岩变形破坏原因。认为:残留煤柱底板集中载荷的非均匀性分布,及其引起的支护体承载结构破坏是近距离煤柱底板巷道围岩发生大变形的本质。由此,提出了基于破碎围岩注浆和高强度锚杆支护的巷道修复技术,工程实践表明该技术在有效提高围岩整体性和可锚性的同时,使浅部锚固区与深部围岩相连形成整体承载结构,有效地控制了巷道围岩变形,保障了矿井安全生产。  相似文献   

18.
任兴云  郝兵元  黄辉 《煤炭技术》2014,33(12):50-52
针对沿空掘巷护巷煤柱两侧松散破碎区不起承载作用的现象,通过注浆加固的方法,将巷道侧煤柱松散破碎区的煤体加固,达到减小护巷煤柱宽度的目的。阳煤五矿8407工作面沿空掘巷煤柱宽为10 m,受煤柱两侧松散破碎区的影响,巷道变形量较大。在巷道侧煤柱松散破碎区内进行了注浆加固试验,通过注浆加固试验段巷道与未注浆加固段巷道变形量、围岩应力的观测对比可知:注浆加固试验段破碎区承载力明显大于未注浆加固段破碎区的承载力,巷道变形量明显小于未注浆加固段巷道变形量。  相似文献   

19.
迎采动面沿空掘巷经历邻近工作面侧向基本顶断裂、转动及稳定的全过程动压影响后,巷道围岩将产生大变形、维护困难.采用理论分析、数值计算和现场试验研究迎采动面沿空掘巷围岩变形规律和控制技术,得到该类巷道受邻近工作面采动影响后围岩呈现非对称变形,窄煤柱和顶板变形剧烈,提出提高窄煤柱和顶板支护强度使围岩形成有效承载体是保持迎采动面沿空掘巷整体稳定的关键,据此提出了合理的围岩控制技术:1)合理确定窄煤柱宽度,使邻近工作面采动影响稳定后巷道处于应力降低区;2)高强度大延伸率锚杆控制围岩变形;3)加强窄煤柱、顶板支护,提高关键部位承载能力.棋盘井煤矿工程实践表明,该技术有效控制了该类巷道围岩变形量,取得了良好效果.  相似文献   

20.
陈跃朋 《中州煤炭》2018,(3):164-169
确定巷间煤柱合理尺寸是保证留底煤掘进双巷布置大采高工作面安全、高产与高效的关键所在。以某矿122106大采高工作面沿底掘进胶运巷和辅运巷之间的护巷煤柱为工程背景,对工作面生产地质条件展开现场调研,同时原位测试巷道围岩地质力学参数。基于上述原始数据理论,估算出煤柱极限强度与合理的煤柱宽度范围,通过数值试验研究手段,分析初步选定宽度煤柱条件下,二次回采阶段巷道围岩及煤柱内部应力、位移和塑性破坏特征。结果表明:煤柱的极限强度为50.48 MPa,合理的煤柱宽度为19.24~29.28 m。煤柱宽度20 m时,煤柱内塑性区是2个独立的区域;当煤柱宽度达到一定程度后,接续面回采对上个工作面侧煤柱应力影响较小,主要是对本侧煤柱影响较大;靠近煤柱侧顶板和帮部变形较大,垂直位移最大值集中在巷道肩角位置,顶板出现不均匀下沉;煤柱核区内垂直应力均小于其极限强度,能保证稳定;煤柱最大垂直应力集中在两侧,靠近采空区的位置,煤柱中部存在较明显的应力下降区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号