共查询到3条相似文献,搜索用时 0 毫秒
1.
Carlos Velasco 《时间序列分析杂志》2007,28(4):600-627
Abstract. We analyse asymptotic properties of the discrete Fourier transform and the periodogram of time series obtained through (truncated) linear filtering of stationary processes. The class of filters contains the fractional differencing operator and its coefficients decay at an algebraic rate, implying long‐range‐dependent properties for the filtered processes when the degree of integration α is positive. These include fractional time series which are nonstationary for any value of the memory parameter (α ≠ 0) and possibly nonstationary trending (α ≥ 0.5). We consider both fractional differencing or integration of weakly dependent and long‐memory stationary time series. The results obtained for the moments of the Fourier transform and the periodogram at Fourier frequencies in a degenerating band around the origin are weaker compared with the stationary nontruncated case for α > 0, but sufficient for the analysis of parametric and semiparametric memory estimates. They are applied to the study of the properties of the log‐periodogram regression estimate of the memory parameter α for Gaussian processes, for which asymptotic normality could not be showed using previous results. However, only consistency can be showed for the trending cases, 0.5 ≤ α < 1. Several detrending and initialization mechanisms are studied and only local conditions on spectral densities of stationary input series and transfer functions of filters are assumed. 相似文献
2.
Abstract. In recent years, methods to estimate the memory parameter using wavelet analysis have gained popularity in many areas of science. Despite its widespread use, a rigorous semi‐parametric asymptotic theory, comparable with the one developed for Fourier methods, is still lacking. In this article, we adapt to the wavelet setting, the classical semi‐parametric framework introduced by Robinson and his co‐authors for estimating the memory parameter of a (possibly) non‐stationary process. Our results apply to a class of wavelets with bounded supports, which include but are not limited to Daubechies wavelets. We derive an explicit expression of the spectral density of the wavelet coefficients and show that it can be approximated, at large scales, by the spectral density of the continuous‐time wavelet coefficients of fractional Brownian motion. We derive an explicit bound for the difference between the spectral densities. As an application, we obtain minimax upper bounds for the log‐scale regression estimator of the memory parameter for a Gaussian process and we derive an explicit expression of its asymptotic variance. 相似文献
3.
Morten
rregaard Nielsen 《时间序列分析杂志》2005,26(2):279-304
Abstract. We consider semiparametric estimation in time‐series regression in the presence of long‐range dependence in both the errors and the stochastic regressors. A central limit theorem is established for a class of semiparametric frequency domain‐weighted least squares estimates, which includes both narrow‐band ordinary least squares and narrow‐band generalized least squares as special cases. The estimates are semiparametric in the sense that focus is on the neighbourhood of the origin, and only periodogram ordinates in a degenerating band around the origin are used. This setting differs from earlier studies on time‐series regression with long‐range dependence, where a fully parametric approach has been employed. The generalized least squares estimate is infeasible when the degree of long‐range dependence is unknown and must be estimated in an initial step. In that case, we show that a feasible estimate which has the same asymptotic properties as the infeasible estimate, exists. By Monte Carlo simulation, we evaluate the finite‐sample performance of the generalized least squares estimate and the feasible estimate. 相似文献