首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. We analyse asymptotic properties of the discrete Fourier transform and the periodogram of time series obtained through (truncated) linear filtering of stationary processes. The class of filters contains the fractional differencing operator and its coefficients decay at an algebraic rate, implying long‐range‐dependent properties for the filtered processes when the degree of integration α is positive. These include fractional time series which are nonstationary for any value of the memory parameter (α ≠ 0) and possibly nonstationary trending (α ≥ 0.5). We consider both fractional differencing or integration of weakly dependent and long‐memory stationary time series. The results obtained for the moments of the Fourier transform and the periodogram at Fourier frequencies in a degenerating band around the origin are weaker compared with the stationary nontruncated case for α > 0, but sufficient for the analysis of parametric and semiparametric memory estimates. They are applied to the study of the properties of the log‐periodogram regression estimate of the memory parameter α for Gaussian processes, for which asymptotic normality could not be showed using previous results. However, only consistency can be showed for the trending cases, 0.5 ≤ α < 1. Several detrending and initialization mechanisms are studied and only local conditions on spectral densities of stationary input series and transfer functions of filters are assumed.  相似文献   

2.
Abstract. We consider M‐estimation of a location parameter for processes with zero autocorrelations but long‐range dependence in volatility. The observed process is the product of i.i.d. Gaussian observations and a long‐memory Gaussian process. For nonlinear estimators, the rate of convergence depends on the type of the ψ‐function. For skew‐symmetric ψ‐functions, a central limit theorem with ‐rate of convergence holds, under suitable regularity assumptions. This is not true in general for M‐estimators where the ψ‐function is not skewsymmetric.  相似文献   

3.
Statistical tests are introduced for distinguishing between short‐range dependent time series with a single change in mean, and long‐range dependent time series, with the former making the null hypothesis. The tests are based on estimation of the self‐similarity parameter after removing the change in mean from the series. The focus is on the GPH (Geweke and Porter‐Hudak, 1983) and local Whittle estimation methods in the spectral domain. Theoretical properties of the resulting estimators are established when testing for a single change in mean, and small sample properties of the tests are examined in simulations. The introduced tests improve on the BHKS ( Berkes et al., 2006 ) test which is the only other available test for the considered problem. It is argued that the BHKS test has a low power against long‐range dependence alternatives and that this happens because the BHKS test statistic involves estimation of the long‐run variance. The BHKS test could be improved readily by considering its R/S‐like regression version which estimates the self‐similarity parameter and which does not involve the long‐run variance. Yet better alternatives are to use more powerful estimation methods (such as GPH or local Whittle) and lead to the tests introduced here.  相似文献   

4.
We provide a self‐normalization for the sample autocovariances and autocorrelations of a linear, long‐memory time series with innovations that have either finite fourth moment or are heavy‐tailed with tail index 2 < α < 4. In the asymptotic distribution of the sample autocovariance there are three rates of convergence that depend on the interplay between the memory parameter d and α, and which consequently lead to three different limit distributions; for the sample autocorrelation the limit distribution only depends on d. We introduce a self‐normalized sample autocovariance statistic, which is computable without knowledge of α or d (or their relationship), and which converges to a non‐degenerate distribution. We also treat self‐normalization of the autocorrelations. The sampling distributions can then be approximated non‐parametrically by subsampling, as the corresponding asymptotic distribution is still parameter‐dependent. The subsampling‐based confidence intervals for the process autocovariances and autocorrelations are shown to have satisfactory empirical coverage rates in a simulation study. The impact of subsampling block size on the coverage is assessed. The methodology is further applied to the log‐squared returns of Merck stock.  相似文献   

5.
This article proposes broadband semi‐parametric estimation of a long‐memory parameter by fractional exponential (FEXP) models. We construct the truncated Whittle likelihood based on FEXP models in a semi‐parametric setting to estimate the parameter and show that the proposed estimator is more efficient than the FEXP estimator by Moulines and Soulier (1999) in linear processes. A Monte Carlo simulation suggests that the proposed estimation is more preferable than the existing broadband semi‐parametric estimation.  相似文献   

6.
In this paper, we propose a test for a break in the level of a fractionally integrated process when the timing of the putative break is not known. This testing problem has received considerable attention in the literature in the case where the time series is weakly autocorrelated. Less attention has been given to the case where the underlying time series is allowed to be fractionally integrated. Here, valid testing can only be performed if the limiting null distribution of the level break test statistic is well defined for all values of the fractional integration exponent considered. However, conventional sup‐Wald type tests diverge when the data are strongly autocorrelated. We show that a sup‐Wald statistic, which is standardized using a non‐parametric kernel‐based long‐run variance estimator, does possess a well‐defined limit distribution, depending only on the fractional integration parameter, provided the recently developed fixed‐b asymptotic framework is applied. We give the appropriate asymptotic critical values for this sup‐Wald statistic and show that it has good finite sample size and power properties.  相似文献   

7.
A desirable property of an autocovariance estimator is to be robust to the presence of additive outliers. It is well known that the sample autocovariance, being based on moments, does not have this property. Hence, the use of an autocovariance estimator which is robust to additive outliers can be very useful for time‐series modelling. In this article, the asymptotic properties of the robust scale and autocovariance estimators proposed by Rousseeuw and Croux (1993) and Ma and Genton (2000) are established for Gaussian processes, with either short‐ or long‐range dependence. It is shown in the short‐range dependence setting that this robust estimator is asymptotically normal at the rate , where n is the number of observations. An explicit expression of the asymptotic variance is also given and compared with the asymptotic variance of the classical autocovariance estimator. In the long‐range dependence setting, the limiting distribution displays the same behaviour as that of the classical autocovariance estimator, with a Gaussian limit and rate when the Hurst parameter H is less than 3/4 and with a non‐Gaussian limit (belonging to the second Wiener chaos) with rate depending on the Hurst parameter when H ∈ (3/4,1). Some Monte Carlo experiments are presented to illustrate our claims and the Nile River data are analysed as an application. The theoretical results and the empirical evidence strongly suggest using the robust estimators as an alternative to estimate the dependence structure of Gaussian processes.  相似文献   

8.
We study non‐parametric regression function estimation for models with strong dependence. Compared with short‐range dependent models, long‐range dependent models often result in slower convergence rates. We propose a simple differencing‐sequence based non‐parametric estimator that achieves the same convergence rate as if the data were independent. Simulation studies show that the proposed method has good finite sample performance.  相似文献   

9.
We consider nonparametric estimation of an additive time series decomposition into a long‐term trend μ and a smoothly changing seasonal component S under general assumptions on the dependence structure of the residual process. The rate of convergence of local trigonometric regression estimators of S turns out to be unaffected by the dependence, even though the spectral density of the residual process has a pole at the origin. In contrast, the rate of convergence of nonparametric estimators of μ depends on the long‐memory parameter d. Therefore, in the presence of long‐range dependence, different bandwidths for estimating μ and S should be used. A data adaptive algorithm for optimal bandwidth choice is proposed. Simulations and data examples illustrate the results.  相似文献   

10.
Abstract. In recent years, methods to estimate the memory parameter using wavelet analysis have gained popularity in many areas of science. Despite its widespread use, a rigorous semi‐parametric asymptotic theory, comparable with the one developed for Fourier methods, is still lacking. In this article, we adapt to the wavelet setting, the classical semi‐parametric framework introduced by Robinson and his co‐authors for estimating the memory parameter of a (possibly) non‐stationary process. Our results apply to a class of wavelets with bounded supports, which include but are not limited to Daubechies wavelets. We derive an explicit expression of the spectral density of the wavelet coefficients and show that it can be approximated, at large scales, by the spectral density of the continuous‐time wavelet coefficients of fractional Brownian motion. We derive an explicit bound for the difference between the spectral densities. As an application, we obtain minimax upper bounds for the log‐scale regression estimator of the memory parameter for a Gaussian process and we derive an explicit expression of its asymptotic variance.  相似文献   

11.
We approach the problem of non‐parametric estimation for autoregressive Markov switching processes. In this context, the Nadaraya–Watson‐type regression functions estimator is interpreted as a solution of a local weighted least‐square problem, which does not admit a closed‐form solution in the case of hidden Markov switching. We introduce a non‐parametric recursive algorithm to approximate the estimator. Our algorithm restores the missing data by means of a Monte Carlo step and estimates the regression function via a Robbins–Monro step. We prove that non‐parametric autoregressive models with Markov switching are identifiable when the hidden Markov process has a finite state space. Consistency of the estimator is proved using the strong α‐mixing property of the model. Finally, we present some simulations illustrating the performances of our non‐parametric estimation procedure.  相似文献   

12.
We consider the problem of testing for change points in the long memory parameter. The test relies on semi‐parametric estimation of the long memory parameter, which does not require the complete parametric specification of the whole spectrum. A self‐normalizer utilizing a sequence of recursive semi‐parametric estimators is used to make the asymptotic distribution of the test statistic free of the nuisance scale parameter. We study the asymptotic behavior of the proposed test for situations when there is at most one change point and also when there are an unknown number of change points. Monte Carlo simulations are carried out to examine the finite‐sample performance of the proposed test.  相似文献   

13.
The Durbin–Levinson algorithm is used to generate Gaussian time series with a given covariance structure. This is the most efficient way, for example, to simulate a Gaussian fractional ARIMA (FARIMA) time series, a linear sequence with i.i.d. Gaussian innovations which exhibits long-range dependence. The paper studies the applicability of the Durbin–Levinson algorithm to the simulation of infinite variance FARIMA sequences including an α-stable FARIMA.  相似文献   

14.
Abstract. We analyze, by simulation, the finite‐sample properties of goodness‐of‐fit tests based on residual autocorrelation coefficients (simple and partial) obtained using different estimators frequently used in the analysis of autoregressive moving‐average time‐series models. The estimators considered are unconditional least squares, maximum likelihood and conditional least squares. The results suggest that although the tests based on these estimators are asymptotically equivalent for particular models and parameter values, their sampling properties for samples of the size commonly found in economic applications can differ substantially, because of differences in both finite‐sample estimation efficiencies and residual regeneration methods.  相似文献   

15.
Interest in continuous‐time processes has increased rapidly in recent years, largely because of high‐frequency data available in many applications. We develop a method for estimating the kernel function g of a second‐order stationary Lévy‐driven continuous‐time moving average (CMA) process Y based on observations of the discrete‐time process YΔ obtained by sampling Y at Δ, 2Δ, …, for small Δ. We approximate g by gΔ based on the Wold representation and prove its pointwise convergence to g as Δ → 0 for continuous‐time autoregressive moving average (CARMA) processes. Two non‐parametric estimators of gΔ, on the basis of the innovations algorithm and the Durbin–Levinson algorithm, are proposed to estimate g. For a Gaussian CARMA process, we give conditions on the sample size n and the grid spacing Δ(n) under which the innovations estimator is consistent and asymptotically normal as n. The estimators can be calculated from sampled observations of any CMA process, and simulations suggest that they perform well even outside the class of CARMA processes. We illustrate their performance for simulated data and apply them to the Brookhaven turbulent wind speed data. Finally, we extend results of Brockwell et al. (2012) for sampled CARMA processes to a much wider class of CMA processes.  相似文献   

16.
Abstract. We propose a non‐parametric local likelihood estimator for the log‐transformed autoregressive conditional heteroscedastic (ARCH) (1) model. Our non‐parametric estimator is constructed within the likelihood framework for non‐Gaussian observations: it is different from standard kernel regression smoothing, where the innovations are assumed to be normally distributed. We derive consistency and asymptotic normality for our estimators and show, by a simulation experiment and some real‐data examples, that the local likelihood estimator has better predictive potential than classical local regression. A possible extension of the estimation procedure to more general multiplicative ARCH(p) models with p > 1 predictor variables is also described.  相似文献   

17.
In this article, we consider a continuous‐time autoregressive moving average (CARMA) process driven by either a symmetric α‐stable Lévy process with α ∈ (0,2) or a symmetric Lévy process with finite second moments. In the asymptotic framework of high‐frequency data within a long time interval, we establish a consistent estimate for the normalized power transfer function by applying a smoothing filter to the periodogram of the CARMA process. We use this result to propose an estimator for the parameters of the CARMA process and exemplify the estimation procedure by a simulation study.  相似文献   

18.
This article proves consistency and asymptotic normality for the conditional‐sum‐of‐squares estimator, which is equivalent to the conditional maximum likelihood estimator, in multivariate fractional time‐series models. The model is parametric and quite general and, in particular, encompasses the multivariate non‐cointegrated fractional autoregressive integrated moving average (ARIMA) model. The novelty of the consistency result, in particular, is that it applies to a multivariate model and to an arbitrarily large set of admissible parameter values, for which the objective function does not converge uniformly in probability, thus making the proof much more challenging than usual. The neighbourhood around the critical point where uniform convergence fails is handled using a truncation argument.  相似文献   

19.
We consider robust estimation of the tail index α for linear long‐memory processes with i.i.d. innovations εj following a symmetric α‐stable law (1 < α < 2) and coefficients ajc·j?β. Estimates based on the left and right tail respectively are obtained together with a combined statistic with improved efficiency, and a test statistic comparing both tails. Asymptotic results are derived. Simulations illustrate the finite sample performance.  相似文献   

20.
A general and flexible framework for the wavelet‐based decompositions of stationary time series in discrete time, called adaptive wavelet decompositions (AWDs), is introduced. It is shown that several particular AWDs can be constructed with the aim of providing decomposition (approximation and detail) coefficients that exhibit certain nice statistical properties, where the latter can be chosen based on a range of theoretical or applied considerations. AWDs make use of a Fast Wavelet Transform‐like algorithm whose filters ‐ in contrast with their counterparts in Orthogonal Wavelet Decompositions (OWDs) – may depend on the scale. As with OWDs, this algorithm has good properties such as computational efficiency and invariance to polynomial trends. A property whose pursuit plays a central role in this work is the decorrelation of the detail coefficients. For many time series models (e.g., FARIMA(0,δ,0)), the AWD filters can be defined so that the resulting AWD detail coefficients are all (exactly) decorrelated. The corresponding AWDs, called Exact AWDs (EAWDs), are particularly useful in simulation of Gaussian stationary time series, if the associated filters have a fast decay. The proposed simulation methods generalize and improve upon existing wavelet‐based ones. AWDs for which the detail coefficients are not exactly decorrelated, but still more decorrelated than those of OWDs, are referred to as approximate AWDs (AAWDs). They can be obtained by truncating EAWD filters, or by adopting some of the existing approaches to modeling the dependence structure of the OWD detail coefficients (e.g., Craigmile et al., 2005 ). AAWDs naturally lead to new wavelet‐based Maximum Likelihood estimators. The performance of these estimators is investigated through simulations and from some theoretical standpoints. The focus in estimation is also on Gaussian stationary series, though the method is expected to work for non‐Gaussian stationary series as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号