首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
在0.14 THz,0.22 THz和0.34 THz折叠波导行波管研制的基础上,讨论了0.41 THz折叠波导行波管慢波结构设计与加工的可行性,分析研究了折叠波导慢波结构弯曲处直角弯曲与半圈弯曲、方形电子注通道与圆形电子注通道对色散特性、耦合阻抗、带宽、冷损耗和增益的影响。考虑了慢波结构中增加理想衰减器对该行波管带宽和增益的影响,得到了0.41 THz折叠波导行波管慢波结构的初步设计方案,为太赫兹折叠波导行波管的继续发展打下了一定基础。  相似文献   

2.
该文提出了3种槽加载折叠波导行波管慢波结构:三角形、梯形和燕尾形槽加载折叠波导。分析比较了不同槽形状对慢波结构的色散特性和耦合阻抗的影响。利用粒子模拟的方法对W波段4种槽加载折叠波导行波管的非线性注-波互作用进行了研究;在相同的电子注参数和输入功率的条件下,对输出功率、电子效率和增益等参量进行了比较。在多种槽加载结构中,梯形槽加载折叠波导输出功率(255 W)和增益(37.1 dB)最大,电子效率最高(10.7%);燕尾形槽加载折叠波导达到饱和所需要的互作用电路最短(64.2 mm);三角形槽加载折叠波导的3 dB带宽最宽。  相似文献   

3.
以折叠波导行波管作为大功率回旋行波管的前级激励信号源,利用电磁仿真软件HFSS和粒子模拟软件(CST粒子工作室),对0.14 THz微电真空折叠波导行波管慢波结构的色散特性、耦合阻抗进行计算分析,然后对折叠波导行波管束波互作用过程进行粒子模拟,最后通过粒子模拟得到该折叠波导行波管的增益、工作电压、电流等工作特性参数。在电压为13.9 kV、电流为16 mA,输入功率为5 mW的条件下,输出功率为5 W,线性增益为30 dB,带宽3.7 GHz,最大输出功率为6.2 W,该结果为0.14 THz大功率回旋行波管实现kW量级的功率输出提供功率足够的前级馈入信号奠定了基础。  相似文献   

4.
行波管具有高增益、宽带宽、高输出功率等优点,但频率提升到THz后,输出功率急剧降低,为此采用多注与功率合成的方式提高输出功率。对D波段折叠波导行波管进行的理论与数值分析表明:单束的3 d B带宽为13 GHz(0.134 THz~0.147 THz),0.14 THz处最大增益为20.88 d B;多束合成增益为20.6 d B,3 d B带宽内合成效率不低于92%。通过微铣削的办法加工完成了2路折叠波导,并对其传输特性进行测量,对比分析了测试与设计结果。并行多注行波管能够以单束小电流、低聚焦磁场方式工作,可有效提高THz行波管的输出功率。  相似文献   

5.
以0.34 THz折叠波导行波管为研究对象,分析了慢波结构的色散特性、耦合阻抗、冷损耗特性和工作模式等,并按优化后折叠波导慢波结构的要求设计电子光学系统,进行流通管实验,得到电子注通过率大于80%的实验结果。最后对输入输出结构进行优化设计,满足中心频率为0.345 THz,带宽大于10 GHz,输出功率大于20 mW的0.34 THz折叠波导行波管设计要求。  相似文献   

6.
为解决太赫兹(THz)行波管工作电流过小、输出功率低等问题,提出了基模多注工作模式的折叠波导行波管(TWT)。首先,获得了基模多注折叠波导色散特性;然后,对基模多注折叠波导的传输特性进行了模拟计算;最后,完成了0.14 THz基模多注折叠波导行波管的注波互作用特性分析。电子注参数为12 m A,15.75 k V时,获得的3 d B带宽为25 GHz(128 GHz~153 GHz),最大增益为33.61 d B,最大峰值功率为23 W;电子注参数为30 m A,15.75 k V时,在0.14 THz处获得了38 d B增益,最大脉冲输出功率为63.1 W。该方法能够有效增大THz行波管的工作电流,提高互作用增益及效率、3 d B带宽、输出功率;在增益相同时,基模多注行波管可以做得更短、更紧凑。  相似文献   

7.
对折叠波导慢波结构进行了研究,对其色散特性和耦合阻抗进行分析,并设计了输能窗和电子光学系统,在此基础上进行了粒子模拟的束波互作用计算。通过设计,对0.14 THz 行波管进行了制管工艺的研究,包括慢波结构的加工和焊接等,完成了热测实验。在电压为16.3 kV,电子流通率为74%条件下,测试得到最大饱和输出功率3.1 W,输出频率140.08 GHz,增益27 dB,最大功率半带宽2.82 GHz。  相似文献   

8.
翼片加载折叠波导电路是一种改进型的行波管互作用电路。与原始结构相比,它具有提高的耦合阻抗、扩展的横向尺寸以及更加灵活的设计能力,因此适合工作在太赫兹频段。首先采用理论模型设计了工作频率0.22THz的慢波结构;然后采用三维粒子模拟技术对翼片加载折叠波导行波管放大器的非线性性能进行了研究。结果显示,新型结构具有高的互作用效率和宽频带放大的能力。在中心工作频率220GHz处,2mW的驱动功率下可以得到4W的饱和输出功率,对应的电子效率和增益分别为2.47%和33dB(考虑了电路的导体损耗);恒定功率下扫频模拟显示,放大器的瞬时3dB带宽可达13.6,频率范围覆盖205~235GHz。  相似文献   

9.
通过对折叠波导的理论分析,提出一种快速设计折叠波导慢波结构的方法。优化设计了中心频率为0.22 THz的折叠波导慢波结构,分析了结构参数对高频特性的影响。为防止振荡,仿真中采用截断的慢波结构。互作用仿真表明,在电子注电压为16 kV,电流为10 mA情况下,中心频率处增益为23.9 dB,输出功率为1.2 W。其中3 dB带宽大于14 GHz(0.214 THz~0.228 THz),带内输出功率大于0.5 W,在7 GHz(0.217 THz~0.224 THz)范围内输出功率大于1 W。  相似文献   

10.
太赫兹真空电子器件成为未来主要的发展方向,本文对1.03 THz折叠波导慢波结构及电子光学系统进行了研究,分析了不同电子注通道形状对于折叠波导特性的影响,包括色散特性、耦合阻抗、衰减特性、功率、增益等,并且利用OPERA 3D软件设计了电子光学系统。仿真结果表明,在中心1.03 THz频率处,与矩形电子注通道折叠波导慢波结构相比,圆形电子注通道的结构色散曲线更为平缓,耦合阻抗提升6.9%,损耗降低6.8%;在10 GHz带宽内功率提升47.4%,增益提升1.2 dB,互作用长度缩短12.3%。在工作电压为17.4 kV时,阴极发射电流大于3 mA,电子注半径为0.012 mm,在均匀区永磁聚焦系统中可稳定传输。  相似文献   

11.
A four-way waveguide power divider has been developed in sub-THz band. The waveguide power divider was achieved with the improved H-plane T-junction structure. By tuning the depth and width at the junction of the waveguide, the input impendence was matched and the two-way output power amplitude and phase were at the same level. The four-way power divider was realized by the concatenation of two same T-junction at the two output ports. A sub-THz four-way passive power combiner is designed, fabricated and measured. The measure results show that the measured insertion loss of the fabricated four-way passive power combiner is less than 1.2 dB whereas the input return loss is greater than 14.8 dB from 97.5 to 101.7 GHz. Experiments on the sub-THz four-way passive power combiner show that a minimum insertion loss of 1 dB has been achieved at about 99.5 GHz. The measured minimum insertion loss of the waveguide power divider is half of the insertion loss for the entire passive power combiner (0.5 dB), which corresponds to a power-combining efficiency of 89 %. The measured results agree with the simulated ones closely.  相似文献   

12.
新一代W波段慢波结构行波管对波导TE10-TEn0 模式转换器的低损耗、宽带、转换效率等高性能方面提出了要求。 文中重点研究一款全W波段波导模式转换器的设计,实现E 面TE10 输入到H 面TE20 输出的模式转换,并结合高效率转换 结构,给出实际性能验证。首先,分析了波导TEn0 模分布特点,提出E 面功分结构、集成扭波导结构及H 面反相合成等单元 结构;其次,给出TE10-TE20 模式转换整体方案设计与电路优化;最后,结合H 面异相功分结构集成,基于计算机数控技术,实 现该W波段模式转换模块的制备,并完成三端口性能测试。实测结果表明,W 波段全带宽内(75 GHz~110 GHz),该TE10-TE20 模式转换模块输出端口功率分配比为-3.2 dB±0.2 dB,相位差为180°±2°,输入端口回波损耗优于-20 dB,且实测性能 均与仿真结果高度一致,验证了W波段宽带TE10-TE20模式转换器的高效率、低损耗、可行性及鲁棒性。  相似文献   

13.
在研究0.14 THz折叠波导行波管中,提出一种三段相速跳变的设计,使得电子能够在输出段与行波场发生速度再同步,从而提高了电子工作效率。根据色散公式,找到一种影响相速变化的结构因素。通过优化设计进行大信号程序计算,在电压14.95 kV、工作电流30 mA时,与未采用相速变化的结构相比,140 GHz时功率提高了0.84 W,效率提高了9.13%;在142 GHz时功率提高了0.88 W,效率提高了10.4%;-1 dB带宽由原来的5 GHz提高到7 GHz,扩展了行波管的带宽,提高了电子与波的互作用效率。  相似文献   

14.
A low-profile millimeter-wave substrate integrated waveguide (SIW) power divider/combiner is presented in this paper. The simplified model of this compact SIW power dividing/combining structure has been developed. Analysis based on equivalent circuits gives the design formula for perfect power dividing/combining. In order to verify the validity of the design method, a four-way SIW power divider/combiner circuit operating at Ka band is designed, fabricated and measured. Good agreement between simulated and measured results is found for the proposed passive power divider/combiner. Experiments on the four-way passive divider/combiner back-to-back design demonstrate a minimum overall insertion loss of 1.5 dB at 31.1 GHz, corresponding to a power-combining efficiency of 84%. The measured 10-dB return loss bandwidth is demonstrated to be 2.2 GHz, and its 0.5-dB bandwidth was 2 GHz.  相似文献   

15.
使用一种显式方法对0.14 THz折叠波导行波管慢波结构进行了快速设计,并通过解析模型、等效电路模型以及电磁场仿真软件(CST MWS)对结构的色散关系和耦合阻抗进行了计算。计算结果表明,0.14 THz附近的色散较为平坦,耦合阻抗在1Ω左右。为了满足大功率输出需求,对初始结构尺寸进行了部分调整。CST PS互作用模拟结果表明,在0.14 THz附近,输出功率大于1 W。用微电火花(EDM)和微铣削方法分别进行了加工实验,结果表明,两种方法在尺寸精确度上均能满足指标要求,微铣削加工能获得更平整、表面粗糙度更好的槽底。  相似文献   

16.
提出了一种波导三路功分器结构,该功分器采用E面T型缝隙耦合结构来实现功分比的调节。通过调节耦合缝隙以及感性膜片,使输入阻抗匹配并且实现等功率同相位的三路功分输出。为了实现功率合成,采用对称的两个三路功分器进行背靠背级联实现功率合成网络,仿真结果显示出良好的驻波效果和极低的插损。最终对加工出的实物进行测量,在32.5~36 GHz频段内实现了输出功率幅度不平衡度小于0.5 dB的良好效果。通过背靠背连接两个功分器实现了在33.3~35.3 GHz带宽内插损小于0.3 dB的功率分配/合成网络。  相似文献   

17.
This article applies an explicit method to the fast structural design for the slow wave circuit of a 0.14 THz broadband folded waveguide traveling wave tube. To valid the primary design, cold-circuit properties, such as dispersion and interaction impedance, were calculated by using both theoretical method and electromagnetic software (CST MWS) simulation. The S parameter S 11 was also calculated by CST MWS with lossy metal being considered. Simulation results show that, the cold pass band is about 70 GHz, and the interaction impedance is about 1 ohm, and indicate that the design method is reasonable for obtaining a 0.14 THz broadband slow wave structure.  相似文献   

18.
0.22 THz 折叠波导慢波结构具有尺寸小,刚度低,精确度与表面光洁度要求高,结构复杂的特点。若采用微数控铣削加工方式,加工产生的应力易造成零件变形。微细电火花线切割加工技术为无刚性电蚀加工,非常适合慢波结构的微细加工。本文从微能脉冲电源、微细电极丝、表面质量、表面残余应力等方面,介绍了0.22 THz 折叠波导慢波结构微电火花线切割加工技术,实践证明:采用微电火花线切割加工工艺加工出的0.22 THz 折叠波导慢波结构,经测试满足了设计要求。  相似文献   

19.
设计了一种Q波段8路功分器/合成器。利用波导功分器及微带功分器混合设计,提出了波导-微带4路功分器与3 dB Wilkinson电桥一体化设计思想,设计出一种较高隔离度,结构紧凑的新型8路功率分配器/合成器。通过高频电磁仿真软件(HFSS)仿真设计,在42 GHz~47 GHz频带范围内,8路分配器输出端口反射损耗优于-19 dB;8路输出端口的幅度不平衡度小于0.25 dB,相位不平衡度小于0.5o,插损小于0.25 dB;4个输出口之间的隔离度大于9 dB,是一种较为理想的8路功率分配器/合成器,在实际小体积高合成效率要求的固态功率合成领域,以及具有小体积的多路信道实现中,具有较高的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号