首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We provide a comprehensive set of electron mobility measurements at 300 K and 77 K on standard and N2O-nitrided MOSFETs, with channel doping in the range 3.8×1017-1.25×1018 cm-3. In such heavily-doped devices, the Fermi level always lies very close to the conduction band edge, where interface traps reach the highest density and the shortest lifetimes. We show that these traps contribute to the gate-channel capacitance, leading to a systematic overestimate of the channel charge. This effect has the largest impact precisely in the roll-off region of the mobility curves, which has been the subject of recent theoretical investigations  相似文献   

2.
Current-voltage characteristics of Au contacts formed on buried implanted oxide silicon-on-insulator (SOI) structures are discussed, which indicate that the dominant transport mechanism is space-charge-limited current (SCLC) conduction in the presence of deep-level states. The deep-level parameters, determined using a simple analysis, appear to be sensitive to anneal conditions used and subsequent processing. Silicon implanted with 1.7×1018 cm-2 oxygen ions at 150 keV following a 1200°C anneal for 3 h shows deep level 0.37 eV below the conduction band edge with a concentration of unoccupied traps of ~ 2×1015 cm-3 . In contrast, arsenic ion implantation, in the 1200°C annealed material with a dose of 1.5×1012 cm-2 at 60 keV and activated by rapid thermal annealing (RTA), introduces a deep level 0.25 eV below the conduction band edge with an unoccupied trap concentration of ~6×1017 cm-2  相似文献   

3.
In this paper, we investigate the effect of counter-doping of nitrogen at the channel region of epitaxial n-channel 4H-SiC MOSFETs on the channel mobility and the threshold voltage. From this study, we have found that the channel mobility steeply improves as the nitrogen dose increases. At a dose of 2× or 2.5×1012 cm-2 the enhancement MOSFET has achieved an effective channel mobility of 20 cm2/Vs or a field effect mobility of 38 cm2/Vs at a peak  相似文献   

4.
In-situ boron-doped polysilicon has been used to form the emitter in p-n-p transistors. Various polysilicon deposition conditions, interface preparation treatments prior to deposition, and post-deposition anneals were investigated. Unannealed devices lacking a deliberately grown interfacial oxide gave effective emitter Gummel numbers GE of 7-9×10-12s cm-4 combined with emitter resistances RE of approximately 8 μΩcm2. Introduction of a chemically grown interfacial oxide increased GE to 2×10 14s cm-4, but also raised RE by a factor of three. Annealing at 900°C following polysilicon deposition raised GE values for transistors lacking deliberate interfacial oxide to approximately 6×1013s cm-4, but had little effect of GE for devices with interfacial oxide. Both types of annealed devices gave RE values in the range 1-2 μΩcm2  相似文献   

5.
Normally off 4H-SiC MOSFET devices have been fabricated on a p-type semiconductor and electrically characterized at different temperatures. A gate oxide obtained by nitrogen ion implantation performed before the thermal oxidation of SiC has been implemented in n-channel MOSFET technology. Two samples with a nitrogen concentration at the SiO2/SiC interface of 5 X 1018 and 1.5 X 1019 cm-3 and one unimplanted sample have been manufactured. The sample with the highest N concentration at the interface presents the highest channel mobility and the lowest threshold voltage. For increasing temperature, in all the samples, the threshold voltage decreases, and the electron channel mobility increases. The latter case attains a maximum value of about 40 cm2/V ldr s at 200degC for the sample with the highest N concentration. These trends are explained by the reduction of interface electron traps in the upper half of the band gap toward the conduction band edge. These results demonstrate that N implantation can be effectively used to improve the electrical performances of an n-type surface channel 4H-SiC MOSFET.  相似文献   

6.
The reduction of trap-state densities by plasma hydrogenation in n-channel polysilicon thin-film transistors (poly-TFTs) fabricated using a maximum temperature of 600°C has been studied. Hydrogenated devices have a mobility of ~40 cm2/V×5, a threshold voltage of ~2 V, an inverse subthreshold of ~ 0.55 V/decade, and a maximum on/off current ratio of 5×108. The effective channel length decreases by ~0.85 μm after a short hydrogenation which may be attributed to the activation of donors at trap states near the source/drain junctions. Trap-state densities decrease from 1.6×1012 to 3.5×1011 cm-2 after hydrogenation, concomitant with the reduction of threshold voltage. Using the gate lengths at which the trap-state densities deviate from the long-channel values as markets for the leading edge of passivation, the apparent hydrogen diffusivity is found to be 1.2×10-11 cm2/s at 350°C in the TFT structure  相似文献   

7.
N-channel metal oxide semiconductor field effect transistors (MOSFETs) using Ta2O5, gate oxide were fabricated. The Ta2O5 films were deposited by plasma enhanced chemical vapor deposition. The IDS-VDS and IDS-VGS characteristics mere measured. The electron mobility was 333 cm2/V·s. The subthreshold swing was 73 mV/dec. The interface trapped charge density, the surface recombination velocity, and the minority carrier lifetime in the field-induced depletion region measured from gated diodes were 9.5×1012 cm-2 eV-1, 780 cm/s and 3×10-6 sec, respectively. A comparison with conventional MOSFETs using SiO2 gate oxide was made  相似文献   

8.
We have fabricated buried channel (BC) MOSFETs with a thermally grown gate oxide in 4H-SiC. The gate oxide was prepared by dry oxidation with wet reoxidation. The BC region was formed by nitrogen ion implantation at room temperature followed by annealing at 1500°C. The optimum doping depth of the BC region has been investigated. For a nitrogen concentration of 1×1017 cm-3, the optimum depth was found to be 0.2 μm. Under this condition, a channel mobility of 140 cm2/Vs was achieved with a threshold voltage of 0.3 V. This channel mobility is the highest reported so far for a normally-off 4H-SiC MOSFET with a thermally grown gate oxide  相似文献   

9.
The H2 cleaning technique was examined as the precleaning of the gate oxidation for 4H-SiC MOSFETs. The device had a channel width and length of 150 and 100 μm, fabricated on the p-type epitaxial layer of 3×1016 cm-3. The gate oxidation was performed after the conventional RCA cleaning, and H2 annealing at 1000°C. The obtained channel mobility depends on the pre-cleaning process strongly, and was achieved 20 cm2/N s in the H2 annealed sample. The effective interface-state density was also measured by the MOS capacitors fabricated on the same chips, resulting 1.8×1012 cm-2 from the photo-induced C-V method  相似文献   

10.
The electrical characteristics of MOSFETs and MOS capacitors utilizing thin (80-230 Å) low-pressure chemical-vapor-deposited (LPCVD) oxide films deposited at 12 Å/min are presented. MOSFETs using CVD oxides show good electrical characteristics with 70-90% of the surface mobility of conventional MOSFETs. The CVD oxides exhibit the same low leakage current and high breakdown fields as the thermal oxides, and significantly lower trapping and trap generation rates than thermally grown oxides. Interface state densities of ⩽3×1010 cm-2 eV-1 are obtained from CVD devices by using a short annealing in oxygen ambient following the deposition. These results indicate that these LPCVD oxide films may be promising dielectrics for MOS device application  相似文献   

11.
The quantitative relationship between field-effect mobility (μ FE) and grain-boundary trap-state density (Nt ) in hydrogenated polycrystalline-silicon (poly-Si) MOSFETs is investigated. The focus is on the field-effect mobility in MOSFETs with Nt 1×102 cm-2. It is found that reducing Nt to as low as 5×1011 cm-2 has a great impact on μFE. MOSFETs with the Nt of 4.2×1011 cm-2 show an electron mobility of 185 cm2/V-s, despite a mean grain size of 0.5 μm. The three principal factors that determine μFE, namely, the low-field mobility, the mobility degradation factor, and the trap-state density Nt are clarified  相似文献   

12.
We present a new analytical mobility model for channel electrons in heavily-doped MOSFETs biased from weak to strong inversion suitable for implementation in device simulation codes. The model accounts for the two-dimensionality of the electron gas and for the effect of charge trapping on the measurements and has been validated by comparing the theoretical curves with an extensive set of mobility measurements performed on devices with channel doping ranging from 3.8×1017 to 1.25×1018 cm-3 over a wide bias and temperature range (141-400 K)  相似文献   

13.
We introduce a new channel engineering design for nano-region SOI and bulk MOSFETs taking into account both carrier velocity overshoot and statistical performance fluctuations. For types of both device, in the high gate drive region, the high field carrier velocity υe is not degraded at channel dopant density Na lower than 1×1017 cm-3, according to an experimental universal relationship between υe and the low field mobility. On the other hand, there is a most suitable Na condition for suppression of statistical threshold voltage fluctuations. This most suitable Na is slightly higher for SOI devices than that for bulk MOSFETs, but it is lower than 1×10 17 cm-3 in both cases. Therefore, this most suitable Na condition is consistent with the above Na condition for carrier velocity. Consequently, new Na conditions for nano region devices are introduced in this study. Na should be designed to be of the order of 1×1016 cm-3 rather than rising by the usual scaling rule, but it is necessary to suppress the short channel effects of SOI and bulk MOSFETs by scaling down the SOI thickness, and to use source/drain junction depth scaling or surface low impurity structures in bulk MOSFETs, respectively  相似文献   

14.
The effect of the Si-SiO2 interface microroughness on the electron channel mobility of n-MOSFETs was investigated. The surface microroughness was controlled by changing the mixing ratio of NH4 OH in the NH4OH-H2O2-H2O solution in the RCA cleaning procedure. The gate oxide was etched, following the evaluation of the electrical characteristics of MOS transistors, to measure the microroughness of the Si-SiO2 interface with scanning tunneling microscopy (STM). As the interface microroughness increases, the electron channel mobility, which can be obtained from the current-voltage characteristics of the MOSFET, gets lower. The channel mobility is around 360 cm2/V-s when the average interface microroughness is 0.2 nm, where the substrate impurity concentration is 4.5×1017 cm-3, i.e. the electron bulk mobility is 400 cm2/V-s. It goes down to 100 cm2/V-s when the interface microroughness exceeds 1 nm  相似文献   

15.
A novel back-gated P-MOSFET structure is fabricated in a high-voltage complementary bipolar technology using BESOI (bonded etch back SOI) substrates. The P+ buried layer regions, used for the PNP BJT are used as the source and drain regions, the N- epi as the channel region, the silicon handle wafer as the gate, and the BOX (buried oxide) as the gate oxide. The P-MOSFET was used to characterize the interface between the BOX and the SOI. The devices exhibit high sub-threshold slope which is attributed to a high interface state density of about 2×1012/cm2 at the bonding interface. Bias-temperature stress measurements show an effective mobile charge density of 4×1010/cm2 in the buried oxide  相似文献   

16.
We report the characteristics of large area (3.3 × 3.3 mm 2) high-voltage 4H-SiC DiMOSFETs. The MOSFETs show a peak MOS channel mobility of 22 cm2/V·s and a threshold voltage of 8.5 V at room temperature. The DiMOSFETs exhibit an on-resistance of 4.2 mΩ·cm2 at room temperature and 85 mΩ·cm2 at 200°C. Stable avalanche characteristics at approximately 2.4 kV are observed. An on-current of 10 A is measured on a 0.103 cm2 device. High switching speed is also demonstrated. This suggests that the devices are capable of high-voltage, high-frequency, low-loss switching applications  相似文献   

17.
A new post-metallization annealing technique was developed to improve the quality of metal-oxide-semiconductor (MOS) devices using SiO 2 films formed by a parallel-plate remote plasma chemical vapor deposition as gate insulators. The quality of the interface between SiO2 and crystalline Si was investigated by capacitance-voltage (C-V) measurements. An H2O vapor annealing at 270°C for 30 min efficiently decreased the interface trap density to 2.0×1010 cm-2 eV-1, and the effective oxide charge density from 1×10 12 to 5×109 cm-2. This annealing process was also applied to the fabrication of Al-gate polycrystalline silicon thin film transistors (poly-Si TFT's) at 270°C. In p-channel poly-Si TFT's, the carrier mobility increased from 60-400 cm2 V-1 s-1 and the threshold voltage decreased from -5.5 to -1.7 V  相似文献   

18.
High performance enhancement mode InP MISFET's have been successfully fabricated by using the sulfide passivation for lower interface states and with photo-CVD grown P3N5 film used as gate insulator. The MISFET's thus fabricated exhibited exhibited pinch-off behavior with essentially no hysteresis. Furthermore the device showed a superior stability of drain current. Specifically under the gate bias of 2 V for 104 seconds the room temperature drain current was shown to reduce from the initial value merely by 2.9% at the drain voltage of 4 V. The effective electron mobility and extrinsic transconductance are found to be about 2300 cm 2/V·s and 2.7 mS/mm, respectively. The capacitance-voltage characteristics of the sulfide passivated InP MIS diodes show little hysteresis and the minimum density of interface trap states as low as 2.6×1014/cm2 eV has been attained  相似文献   

19.
Effective electron velocities in silicon MOSFETs exceeding the bulk saturation values of 107 cm/s at room temperature and 1.3×107 cm/s at liquid-nitrogen temperature are inferred. This conclusion suggests that electron velocity overshoot occurs over a large portion of the device channel length. To infer this phenomenon, submicrometer-channel-length Si MOSFETs with lightly doped inversion layers were fabricated. These devices have low field mobility of 450 cm2/V-s and showed only slight short-channel effects. Effective carrier velocities are calculated from the saturated transconductance gm at VDS=1.5 V after correction for parasitic resistances of source and drain  相似文献   

20.
The electrical properties of MOS capacitors with an indium tin oxide (ITO) gate are studied in terms of the number density of the fixed oxide charge and of the interface traps Nf and N it, respectively. Both depend on the deposition conditions of ITO and the subsequent annealing procedures. The fixed oxide charge and the interface-trap density are minimized by depositing at a substrate temperature of 240°C at low power conditions and in an oxygen-rich ambient. Under these conditions, as-deposited ITO films are electrically conductive. The most effective annealing procedure consists of a two-step anneal: a 45-s rapid thermal anneal at 950°C in N2, followed by a 30 min anneal in N2/20% H2 at 450°C. Typical values obtained for Nit and Nf are 4.2×1010 cm-2 and 2.8×1010 cm-2, respectively. These values are further reduced to 1.9×1010 cm-2 and ≲5×109 cm-2, respectively, by depositing approximately 25 nm polycrystalline silicon on the gate insulation prior to the deposition of ITO  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号