首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Utilities face the challenge of enhancing long-term water security while minimising undesirable economic, social and environmental impacts of supply and demand management options. This paper provides an example of how the ecosystem services concept can be used to enumerate and organise broad impacts of water supply options. A case study of Adelaide, South Australia, is used to examine costs and benefits associated with different sources of water and source-water mix scenarios. Ecosystem service impacts are estimated using estimates from the literature. Seven water supply and demand management options are considered for Adelaide: 1) the River Murray, 2) Mt. Lofty Ranges catchments, 3) wastewater reuse, 4) desalination, 5) stormwater harvesting, 6) groundwater and 7) water conservation. The largest costs are associated with sourcing water from conservation measures such as water restrictions on outdoor watering estimated at $1.87/kL. Salinity damage costs associated with residential uses are estimated at up to $1.54/kL. Salinity damage costs of wastewater reuse were estimated at $1.16/kL. The largest benefit is coastal amenity services associated with stormwater harvesting and treatment estimated at $1.03/kL. Results show that there is a trade-off between financial costs and ecosystem services impacts with source-water mix scenarios with the highest ecosystem services cost having the lowest financial O&M cost and vice versa. This highlights the importance of taking ecosystem services into account when evaluating water supply options.  相似文献   

2.
Cities in developed countries have increasingly adopted rainwater tanks as an alternative water source over the last 15 years. The rapid uptake of rainwater tanks has been driven by the need to reduce demand for centralised water services that are under pressure to adapt to population growth and climate change impacts. Rainwater tanks are part of integrated urban water management approach that considers the whole water cycle to provide water services on a fit for purpose basis that minimises the impact on the local environment and receiving waters. Rainwater tanks are typically applied at the household scale for non-potable water source uses such as toilet flushing and garden irrigation. However, this paper reports on a communal approach to rainwater harvesting, where the water is treated for potable use. A communal approach to rainwater harvesting can offer benefits, such as: economies of scale for capital costs, reduced land footprint, centralised disinfection and flexibility in matching supply and demand for different households. The analysis showed that the communal approach could provide a reliable potable water source to a small urban development. However, there was an energy penalty associated with this water source compared to centralised systems that could be addressed through more appropriate pump sizing. The outputs from this monitoring and modelling study demonstrated rainwater harvesting can be expanded beyond the current mainstream practices of household systems for non-potable use in certain development contexts. The analysis contained in this paper can be used for the improved planning and design of communal approaches to rainwater harvesting.  相似文献   

3.
Management of drinking water safety is changing towards an integrated risk assessment and risk management approach that includes all processes in a water supply system from catchment to consumers. However, given the large number of water supply systems in China and the cost of implementing such a risk assessment procedure, there is a necessity to first conduct a strategic screening analysis at a national level. An integrated methodology of risk assessment and screening analysis is thus proposed to evaluate drinking water safety of a conventional water supply system. The violation probability, indicating drinking water safety, is estimated at different locations of a water supply system in terms of permanganate index, ammonia nitrogen, turbidity, residual chlorine and trihalomethanes. Critical parameters with respect to drinking water safety are then identified, based on which an index system is developed to prioritize conventional water supply systems in implementing a detailed risk assessment procedure. The evaluation results are represented as graphic check matrices for the concerned hazards in drinking water, from which the vulnerability of a conventional water supply system is characterized.  相似文献   

4.
Perceptions of the quality of roof harvested rainwater remain an impediment to widespread implementation of rainwater tanks on urban allotments. Previous literature reports on roof water quality have given little consideration to the relative significance of airborne environmental micro-organisms to roof catchment contamination and the issue of tank water quality. This paper outlines the findings of a recent study into the influence of weather on roof water contamination conducted at an urban housing development in Newcastle, on the east coast of Australia. Samples of direct roof run-off were collected during a number of separate rainfall events, and microbial counts were matched to climatic data corresponding to each of the monitored events. Roof run-off contamination was found to be under the strong influence of both wind speed and direction. The preliminary findings of an investigation currently under way into the microbial diversity of rainwater harvesting systems have also been presented. The results indicate that the composition of organisms present varied considerably from source to source and throughout the collection system. In all cases, evidence of faecal contamination was found to be negligible. The implications of these findings to the issues of tank water quality, health risk analysis and monitoring protocols have been discussed.  相似文献   

5.
Faecal-derived microbial pollution of fresh surface waters is a global problem. Water quality models can play an important role in the management of microbial pollution; however, most existing models are too complex and require a large amount of observed data for calibration, thereby excluding their use in data-scarce catchments. The Water Quality Systems Assessment Model (WQSAM) is a water quality water model structured on the concept of requisite simplicity, thereby limiting the complexity and data requirements of the model. Here, microbial water quality simulation functionality was added to WQSAM, with the aim of assessing whether a simplified representation of processes affecting microbial water quality is sufficiently accurate for purposes of water resource management. Simulations of microbial water quality were based on the inputs and fate of an indicator organism, Escherichia coli. Non-point source inputs were modelled by assigning microbial water quality ‘signatures’ to incremental flow components, whereas a similar signature was assigned to point source inputs. The instream fate of E. coli was based on a first-order rate equation, moderated by salinity and water temperature. The model was validated by application to the upper to middle Crocodile River Catchment, Mpumalanga, South Africa, for historical conditions. Model simulations were obtained that were representative of the variability of observed temperature, salinity and microbial water quality data. The simulations of E. coli were found to be most sensitive to the decay rate k 0. It is argued here that the uncertainty in model results due to the use of a relatively simple model structure would be no more, or even less that that due to the application of a complex model to a catchment with insufficient observed data for adequate model calibration.  相似文献   

6.
水源热泵一般采用地下水作为水源,而长期抽取地下水将引起地面沉降、水质污染恶化,开辟新的水源热泵,具有十分重要的节能意义。温泉洗浴废水与一般的地下水相比,除水温不同外,还含有大量有机物、微生物。通过检测重庆南温泉洗浴废水水质,结果表明:废水钙镁离子含量、硫酸根离子含量超出了《浅层地热能勘查评价规范》标准,而浑浊度、矿化度、pH值、氯离子含量和二氧化硅含量均能满足水源热泵供水水质要求;有机物浓度较高,存在生物污染。如对此类废水采取相应的处理措施,水量稳定、水温高于常温的温泉洗浴废水不失为一种水源热泵供水的理想水源。  相似文献   

7.
浅析乌拉泊水源保护区现状及保护治理措施   总被引:4,自引:0,他引:4  
随着乌鲁木齐各项事业的发展和城市规模的不断扩大,对水的需求量也不断增加。乌拉泊水源地为乌鲁木齐重要的城市供水水源地,被定为一级水源保护区,水资源储量的多少及水质的好坏事关乌鲁木齐的用水安全。本文分析了水源保护区的现状,并针对存在的问题提出改善治理措施,从而提高生态环境质量,为城市输送稳定优质的水源,实现乌鲁木齐的可持续发展。  相似文献   

8.
Distribution pipe biofilms can provide sites for the concentration of a wide range of microbial pathogens, thereby acting as a potential source of continual microbial exposure and furthermore can affect the aesthetic quality of water. In a joint project between Stockholm Water, the MISTRA "Sustainable Urban Water" program, the Swedish Institute for Infectious Disease Control and the Royal Technical University, Stockholm, the aim of the current study was to investigate biofilms formed in an urban water distribution system, and quantify the impact of such biofilms on potential pathogen accumulation and persistence within the Greater Stockholm Area, Sweden. When used for primary disinfection, ultra-violet (UV) treatment had no measurable influence on biofilm formation within the distribution system when compared to conventional chlorination. Biofilms produced within a model pilot-plant were found to be representative to those that had formed within the larger municipal water distribution system, demonstrating the applicability of the novel pilot-plant for future studies. Polystyrene microspheres (1.0 microm) and Salmonella bacteriophages demonstrated their ability to accumulate and persist within the model pilot-plant system, where the means of primary disinfection (UV-treatment, chlorination) had no influence on such phenomena. With the exception of aeromonads, potential pathogens and faecal indicators could not be detected within biofilms from the Stockholm water distribution system. Results from this investigation may provide information for water treatment and distribution management strategies, and fill key data gaps that presently hinder the refinement of microbial risk models.  相似文献   

9.
Agricultural non-point source pollution, common in water supply catchments worldwide, can have significant environmental and human health impacts, and its mitigation poses a challenge for policymakers. We used deliberative multi-criteria evaluation (DMCE) to identify a mix and sequence of policy instruments (or policy design) to address agricultural non-point source pollution using a case study of Cryptosporidium contamination in the Myponga River water supply catchment, South Australia. The major impediments to adoption of on-farm water quality management and benefits for ecosystem services were identified using a landholder survey for use as decision criteria in DMCE. The DMCE approach involved stakeholders in policy design during two community fora held in the catchment. We developed six policy scenarios and quantified their impact on decision criteria. The relative importance of decision criteria was quantified using swing weights and consensus was reached on the preferred policy scenario. The mix, sequence, and targeting of instruments in the preferred policy scenario were refined based on information obtained through the deliberative process. Impediments to adoption included a lack of both information/knowledge and financial resources. The recommended policy scenario involved targeted information, followed by an incentive program, and finally the regulation of a mandatory code of practice for water quality management. Detailed, catchment-specific context obtained through DMCE was critical for refining an effective mix and sequence of policy instruments. The techniques may be readily used to select and schedule policy instruments for effective mitigation of agricultural non-point source pollution in other drinking water supply catchments elsewhere.  相似文献   

10.
The World Health Organisation's (WHO) Water Safety Plans highlight the need for preventative risk management when managing water contamination risks. As part of this approach, a management framework incorporating multiple barriers is necessary and there is a need to validate those barriers through scientific evidence. This paper reports on a study undertaken to validate the effectiveness, in terms of pathogen numbers, of having protected watersheds. The study aimed to determine if the deer population in a protected watershed carried Cryptosporidium and whether or not it was human infectious. Deer faecal samples were collected from the protected watersheds over a 12 month period and analysed using a new method, developed as part of this project, for genotyping Cryptosporidium. Early results showed the presence of Cryptosporidium, but following a refinement in the method no human infectious Cryptosporidium was detected. The results give some confidence that having protected watersheds is an effective barrier against pathogen contamination. They do not, however, imply that continued monitoring and management of the deer should cease. To maintain compliance with the Water Safety Plans, continual validation of barrier effectiveness is required.  相似文献   

11.
Risk mitigation provided by human monitoring and control over a water supply system has been consistently overlooked when estimating pathogen exposure to consumers. The Systems-Actions-Management (SAM) framework lends itself neatly to Quantitative Microbial Risk Assessment (QMRA) as one way to establish this link. The general premise is that an organisational protocol will influence how a human controller behaves, in turn influencing the system performance. For illustrative purposes, the framework was applied to a hypothetical water supply system to quantify the risk reduction offered by routine Cryptosporidium monitoring and the response to oocyst 'detects'. Our findings suggest that infrequent direct pathogen monitoring may provide a negligible risk barrier. The practice of sampling treated water to verify microbiological integrity is also dubious: oocyst densities were largely under-estimated, in part due to the spatial dispersion of oocysts in the waterbody, but predominantly from imperfect detection methods. The development of 'event-driven' monitoring schemes with barrier performance-based treatment verification methods, as promoted in new guidelines, is supported as a pressing issue to reduce the likelihood of undetected pathogen passage through a treatment plant.  相似文献   

12.
Harvesting stormwater from urban catchments provides a supplementary water resource and, due to the physical abstraction of polluted water, also leads to environmental benefits. These benefits include the reduction of frequent ecosystem disturbance during small storms and less waterway erosion; hydrological impacts which are currently addressed by Water Sensitive Urban Design guidelines for stormwater frequent flow management (FFM). Although FFM and stormwater harvesting share the same store-release behaviour, they have a very different underlying basis to their design and operation. This paper explores the level of compatibility between these two systems and hence the potential for their integration. It was found by water balance analysis that the harvesting storage required to maximise most yields is similar to the recommended storage volume for FFM. This analysis was performed for a temperate-climate location in South East Queensland under historically low rainfalls. Environmental benefits associated with runoff quantity and pollutant load reductions are highest when the capture storage is rapidly emptied after storms.  相似文献   

13.
江水引起的热泵换热器结垢不仅会增大机组进出口阻力,还会导致换热器的换热效率下降。江水水质对换热器污染起决定作用。江水源热泵污垢形成的关键水质因素及相关性分析是热泵用水体评价和水处理决策的基础。通过对重庆地区长江和嘉陵江水质测试分析,并与现行允许水质指标的对比,表明含沙量和浊度是江水源热泵的重点解决问题。对江水源热泵换热器污垢的成份分析则表明,污垢是以小粒径泥沙的颗粒污垢为主。从而确定关键水质因素是含沙量和浊度。根据与实际江水泥沙配置保持一致的自配水样分析,得到了含沙量与浊度的关系方程,误差分析表明预测值与实测值能较好地吻合。  相似文献   

14.
Urbanization degrades the hydrology and water quality of waterways. Changes to flow regimes include increased frequency of surface runoff, increased peak flows and an increase in total runoff. At the same time, water use in many cities is approaching, and in some cases exceeding, sustainable limits. Stormwater harvesting has the potential to mitigate a number of these detrimental impacts. However, excessive harvesting of stormwater could also be detrimental to stream health. Therefore, a study was undertaken to test whether typical stormwater harvesting scenarios could meet the dual objectives of (i) supplying urban water requirements, and (ii) restoring the flow regime as close as possible to 'natural' (pre-developed). Melbourne and Brisbane, which have different climates, were used along with three land use scenarios (low, medium and high density). Modelling was undertaken for a range of flow and water quality indicators. The results show that using these typical harvesting scenarios helped to bring flow and water quality back towards their pre-developed levels. In some cases, however, harvesting resulted in an over-extraction of flow, demonstrating the need for optimizing the harvesting strategy to meet both supply and environmental flow objectives. The results show that urban stormwater harvesting is a potential strategy for achieving both water conservation and environmental flows.  相似文献   

15.
The steady increase of urban population and the possible effects of climate change that may adversely affect the amount of water available in current water supply systems, makes the study of stormwater and rainwater harvesting and wastewater recycling a high priority. The basic proposition is that any system of water supply that can reduce the amount of water drawn from main reservoirs will be of benefit to the whole supply region especially in terms of drought security. This paper describes a versatile modelling framework which can simulate a wide variety of combinations of centralised and decentralised Integrated Urban Water Management schemes from the allotment to the whole suburb scale. The framework combines two modelling approaches. The first, called urbanCycle, simulates water supply and demand, stormwater and wastewater using allotments as the basic building block. Although urbanCycle can simulate processes in great detail, it assumes that the network forms a directed acyclic graph. This simplifies the connectivity logic but precludes investigation of systems with decentralised storage, feedbacks and multiple supply paths. To overcome this, a second model, called urbanNet, based on network linear programming, is embedded in the urbanCycle framework to enable the modelling of recycling and harvesting options, as well as on-the-fly supply and demand decision making, based on objectives rather than pre-set operating rules.  相似文献   

16.
Facing climate change and rapid urbanization, urban flooding has exposed human and properties to increasing disaster risks. The attention from researchers and decision-makers to understand the key role of flood regulation service (FRS) in flood management has arisen. However, the mechanism of FRS supply–demand is little known from landscape scale. The FRS assessment methodology considering interacts between source, sink, and flow landscape was proposed in this study. The spatial distributions of surface runoff generation, runoff reduction capacity, and flood inundation were mapped using one-dimensional rainfall–runoff method SCS-CN and two-dimensional flood propagation model CADDIES. Four 3-hour designed rainfall scenarios ranging from nuisance to extreme events (3a, 11a, 56a, and 100a) were simulated. The Liuyang River Watershed in Changsha Municipality, China was selected for case study. The results showed that, the differences of runoff reduction coefficient and runoff generation volume between vegetation and built-up landscape have shortened. The peak flood depth, extent of flood inundation, and peak flood velocity have increased continuously with the growing rainfall intensity. The number of source–sink mismatch catchment was the highest under 56 and 100a, and the most of source-sink match catchments were observed under 3a. Under four rainfall scenarios, the changes of source–sink relationships were witnessed and the potentials of flow zone in source–sink mismatch catchments have increased. The FRS management framework concerning supply–demand connections has been proposed based on source–sink–flow analysis. These findings could provide a scientific basis for sustainable urban flood management and disaster risk mitigation.  相似文献   

17.
Uneven precipitation in space and time together with mismanagement and lack of knowledge about existing water resources, have caused water shortage problems for water supply to large cities and irrigation in many regions of China. There is an urgent need for the efficient use and regional planning of water resources. For these purposes, the monthly variation of discharges should be made available. In this paper, a simple water balance modelling approach was applied to seven catchments (385–20002) for water resources assessment. Six catchments were chosen from the humid region in southern China and one catchment from the semi-arid and semi-humid region in northern China. The results are satisfactory. It is suggested that the proposed modelling approach provides a valuable tool in the hands of planners and designers of water resources.  相似文献   

18.
In the lower River Murray, Australia, populations of gastropods have declined markedly over the past 40 years. Of the native fauna of about 18 species, only the ancylid Ferrissia petterdi remains common (but in patches), and another five species feature in sporadic local resurgences. Until recently the viviparid Notopala was thought to be extinct. The introduced physid Physa acuta is widespread, but in low numbers. The decline probably is associated with flow regulation, high turbidity and the introduction of common carp. Snail populations have persisted, however, in irrigation pipelines fed from the river, where they periodically cause blockages. This paper reports the discovery of the only known populaion of Notopala hanleyi in a pipeline where the inner wall accumulates microbial and other organic matter, providing high quality food for snails. In the Murray before regulation most of the periphytic biomass was probably microbial, as fluctuating water levels would have maintained littoral communities in a highly productive, early state of succession his postulated that, by stabilizing seasonal water levels, regulation has promoted the production of filamentous green algae, an inferior food source, and so displaced snail populations from the open aquatic environment.  相似文献   

19.
Nephelometric turbidity is an optical index for the side scattering of light caused by fine particles suspended in water. When a mixed composition of suspended inorganic and organic materials, including dissolved organic material, is present, turbidity measurements can be affected by the different optical properties of the organic and inorganic materials present, and different turbidimeters are more or less sensitive to these influences. Two different methods of nephelometric turbidity measurement were assessed (using instruments confirming to two different turbidity standard methods: EPA 180.1 and ISO 7027). We investigated the influence of particulate organic matter and coloured dissolved organic matter on relationships between turbidity and suspended sediment concentration for rivers in diverse Otago catchments, in the South Island of New Zealand. The presence of organic matter and dissolved colour affected turbidity measurement owing to light absorption; however, turbidity measurement following the ISO 7027 standard, which specifies near infrared radiation at wavelengths where organic absorption is very weak, was less affected by organics. As a result, rating equations between suspended sediment and turbidity may be significantly different with ISO 7027 compared with EPA 180.1 methods.  相似文献   

20.
Long-term trends in alpine and prairie snow pack accumulation and melt are affecting streamflow within the Oldman River Basin in southern Alberta, Canada. Unchecked rural and urban development also has contributed to changes in water quality, including enhanced microbial populations and increased waterborne pathogen occurrence. In this study we look at changing environment within the Oldman River Basin and its impact on water quality and quantity. The cumulative effects include a decline in net water supplies, and declining quality resulting in increased risk of disease. Our data indicates that decreases in the rate of flow of water can result in sedimentation of bacterial contaminants within the water column. Water for ecosystems, urban consumption, recreation and distribution through irrigation is often drawn from waterholding facilities such as dams and weirs, and concern must be expressed over the potential for contaminate build-up and disproportionate potential of these structures to pose a risk to human and animal health. With disruption of natural flow rates for water resulting from environmental change such as global warming and/or human intervention, increased attention needs to be paid to use of best management practices to protect source water supplies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号