共查询到18条相似文献,搜索用时 78 毫秒
1.
采用感应加热技术热煨奥氏体不锈钢弯管,对热煨后弯管的组织、性能及外观进行了分析研究。结果表明感应加热的奥氏体不锈钢弯管不仅可以不进行固溶和消除应力处理,而且具有各部分性能相差小、弯管表面氧化层薄,良好的外观和形状,是其它加工方法无法比拟。 相似文献
2.
3.
利用光学显微镜(OM)、扫描电镜(SEM)及能谱仪(EDS)等对不同温度下固溶处理高硅锰奥氏体不锈钢(UNS S21800钢)的晶间腐蚀进行了研究,分析了固溶处理和固溶+敏化处理两种工艺下进行晶间腐蚀试验后试样的组织形貌及晶间腐蚀倾向。研究结果表明:固溶处理后进行晶间腐蚀的试样中,表面均未发现裂纹,900℃固溶处理试样其晶界处存在较多的第二相,在950℃时第二相颗粒数量明显减少,当温度达到1200℃时,晶界附近已难以观测到第二相颗粒;经固溶处理+675℃敏化处理后进行晶间腐蚀试验的试样中,900℃固溶处理试样表面观测到有晶间裂纹存在,而固溶温度在950℃及其以上温度的试样未出现晶间裂纹。形成晶间裂纹原因是由于900℃固溶处理试样经过敏化处理后晶界处析出了更多的球状和长条状的富Cr碳化物,使得晶界附近区域形成了贫铬区,发生了晶间腐蚀;而950~1200℃固溶处理+敏化处理试样由于在固溶过程中第二相已大量溶入基体,虽然在敏化过程有部分析出,但不足以形成贫铬区,因此在该温度区间内难以发生晶间腐蚀行为。 相似文献
4.
研究了固溶处理温度对22Mn-13Cr-5Ni-0.25N奥氏体不锈钢组织和性能的影响。结果表明,随固溶处理温度提高,奥氏体晶粒尺寸增大,强度降低,延伸率和断面收缩率变化不大。在拉伸变形过程中沿,面产生形变孪晶,先形成的形变孪晶阻碍位错运动,使强度进一步增加。 相似文献
5.
6.
本文对含有残余铁素体的奥氏体不锈钢进行不同温度的固溶处理,使用SEM、EBSD、TEM和显微硬度等技术分析试验样品的微观组织、织构和析出相。结果表明:奥氏体不锈钢在900~1100℃固溶处理30min后水淬,存在奥氏体、铁素体和Sigma三相,未发现M23C6和Chi相。在900~1000℃范围内生成Sigma相,Sigma相会提高基体硬度。Sigma相主要由残余δ铁素体分解生成, {001}<110>和{001}<100>取向的δ铁素体优先向Sigma相转变。且随着温度的升高,Sigma含量降低,奥氏体平均晶粒尺寸增加,硬度呈逐渐下降趋势。固溶温度超过1050℃后,Sigma相完全固溶进奥氏体中,奥氏体平均晶粒尺寸显著长大,硬度值快速降低,残余铁素体中{001}<110>和{001}<100>织构重新增强。1100℃固溶处理后,残余铁素体含量降低至0.2%。 相似文献
7.
8.
9.
10.
主要研究固溶处理对新型奥氏体不锈钢(ASMECODECASE2328-1)焊接接头性能的影响。采用光学显微镜观察和分析了焊缝的显微组织;采用拉伸试验机、弯曲试验机测试了焊接接头的机械性能。结果表明:经过固溶处理后,硬度下降,常温抗拉强度提高,高温抗拉强度下降,抗腐蚀能力明显增强。 相似文献
11.
固溶处理温度对304奥氏体不锈钢敏化与晶间腐蚀的影响 总被引:2,自引:0,他引:2
采用电化学动电位再活化法(EPR)研究了经950℃和1050℃固溶处理304奥氏体不锈钢晶间腐蚀敏化度Ir/Ia、敏化时间t和敏化温度T之间关系,根据腐蚀速率Rmpy与微观腐蚀形貌绘制了304不锈钢敏化的TTS曲线,探讨了固溶处理温度改变对TTS曲线的影响。结果表明,1050℃固溶处理试样的耐晶间腐蚀性能优于950℃固溶处理试样。 相似文献
12.
13.
对影响TP321不锈钢无缝钢管耐晶间腐蚀性能的因素进行分析,从化学成分、金相组织、工艺流程、热处理制度等方面研究可能导致耐蚀性降低的原因,并采取措施消除不利影响。通过控制化学成分、调整热处理制度以及优化脱脂工艺等一系列改进措施,使TP321不锈钢无缝钢管晶间腐蚀试验一次合格率稳定在95%以上水平。 相似文献
14.
15.
16.
采用电化学测试法、点腐蚀试验法、盐雾腐蚀试验法和慢应变速率测试法,分别对比研究了核级316NG控氮奥氏体不锈钢和321奥氏体不锈钢的局部腐蚀行为,并利用扫描电子显微镜、光学显微镜等分别观察腐蚀后不锈钢的表面形貌。结果表明:316NG和321不锈钢晶间腐蚀再活化率分别为3.83%和4.47%,点腐蚀速率分别为10.74g/(m2·h)和45.97g/(m2·h),盐雾腐蚀速率分别为2.14×10-2 g/(m2·h)和12.32×10-2 g/(m2·h),应力腐蚀开裂敏感指数分别为0.078和0.10;316NG不锈钢中N和Mo元素提高了其耐局部腐蚀性能,因此其耐局部腐蚀性能均优于核电站结构材料321不锈钢的。 相似文献
17.
18.
目的 对比研究原始、固溶和敏化态的304和321奥氏体不锈钢在模拟加氢催化氯化铵环境中的应力腐蚀(SCC)行为及机理。方法 将304和321奥氏体不锈钢经过热处理制备成固溶和敏化态试样,采用U形弯试样在模拟加氢催化氯化铵环境中浸泡的应力腐蚀试验方法对其进行研究,通过观察U形弯弧顶的腐蚀形貌和开裂时间,并结合腐蚀及裂纹的SEM照片和电化学测试结果进行分析。结果 原始和固溶状态304不锈钢U形弯试样在氯化铵溶液环境中开裂时间为25 d左右,断口形貌分别为穿晶断口和沿晶断口;敏化态试样18 d后发生开裂,断口形貌为穿晶和沿晶的混合断口。原始和固溶态321不锈钢U形弯试样在该环境中经过39 d均无应力腐蚀裂纹;敏化试样经30 d后产生宏观开裂。电化学测试结果显示,不同热处理态的304不锈钢在氯化铵溶液中均具有明显的点蚀敏感性,321不锈钢在该环境中耐点蚀和应力腐蚀的能力优于304不锈钢。结论 不同状态的304不锈钢在高温氯化铵环境中具有较强的应力腐蚀倾向,特别是敏化态试样;321不锈钢在该环境中的应力腐蚀敏感性相对较小,但敏化处理显著增加了其沿晶应力腐蚀倾向,而固溶态试样具有明显的沿晶腐蚀特征。 相似文献