首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
定向碳纳米管的化学气相沉积制备法   总被引:1,自引:0,他引:1  
报道了一种简便有效的合成定向碳纳米管 (CNTs)的化学气相沉积 (CVD)制备方法。以铁为催化剂 ,乙炔为碳源 ,采用单一反应炉 ,直接在石英基底上沉积催化剂颗粒薄膜 ,成功合成了定向性好、管径均匀的高质量大密度的碳纳米管  相似文献   

2.
To study the effects of hydrocarbon precursor gases, graphene is grown by chemical vapor deposition from methane, ethane, and propane on copper foils. The larger molecules are found to more readily produce bilayer and multilayer graphene, due to a higher carbon concentration and different decomposition processes. Single- and bilayer graphene can be grown with good selectivity in a simple, single-precursor process by varying the pressure of ethane from 250 to 1000 mTorr. The bilayer graphene is AB-stacked as shown by selected area electron diffraction analysis. Additionally propane is found to only produce a combination of single- to few-layer and turbostratic graphene. The percent coverage is investgated using Raman spectroscopy and optical, scanning electron, and transmission electron microscopies. The data are used to discuss a possible mechanism for the second-layer growth of graphene involving the different cracking pathways of the hydrocarbons.  相似文献   

3.
In this paper, we report a simple approach to synthesize silicon carbide (SiC) nanowires by solid phase source chemical vapor deposition (CVD) at relatively low temperatures. 3C-SiC nanowires covered by an amorphous shell were obtained on a thin film which was first deposited on silicon substrates, and the nanowires are 20–80 nm in diameter and several μm in length, with a growth direction of [200]. The growth of the nanowires agrees well on vapor-liquid-solid (VLS) process and the film deposited on the substrates plays an important role in the formation of nanowires.  相似文献   

4.
铜镍合金为衬底化学气相沉积法制备石墨烯研究   总被引:1,自引:0,他引:1  
利用磁控双靶共溅射法制备了不同含量的铜镍合金薄膜,利用EDAX对合金薄膜衬底的铜镍配比进行了定量分析。以苯为碳源,选择相同的合金衬底分别在800、600和400℃的温度下使用化学气相沉积法生长石墨烯,对样品进行了拉曼光谱和SEM表征,研究了温度对石墨烯生长的影响。选择不同配比的铜镍合金衬底,在400℃下生长石墨烯,研究了衬底中铜、镍元素不同配比对石墨烯生长的影响。  相似文献   

5.
6.
Initiated chemical vapor deposition (iCVD) is a technique used to synthesize polymer thin films and coatings from the vapor phase in situ on solid substrates via free-radical mechanisms. It is a solventless, low-temperature process capable of forming very thin conformal layers on complex architectures. By implementing a combinatorial approach that examines five initiation temperatures simultaneously, we have realized at least a five-fold increase in efficiency. The combinatorial films were compared to a series of blanket films deposited over the same conditions to ensure the combinatorial system provided the same information. Direct synthesis from the vapor phase allows for in situ control of film morphology, molecular weight and crosslinking, and the combinatorial system decreases the time required to find the relationship between these interrelated properties. Some coatings were tested for antimicrobial performance against E. coli and B. subtilis.  相似文献   

7.
8.
直流热阴极CVD金刚石薄膜生长特性研究   总被引:1,自引:0,他引:1  
为了获得高质量的金刚石薄膜,采用直流热阴极化学气相沉积系统分别在不同基片温度和不同碳源气体含量条件下生长金刚石薄膜,利用Raman光谱、SEM和XRD检测方法研究了基片温度和碳源气体含量对金刚石薄膜生长特性的影响.结果表明,金刚石薄膜与基片Mo之间有Mo2C的过渡层存在;1000℃的温度能够促进金刚石晶体的生长,抑制其他碳杂质的形成,CH4体积分数为2%适于快速生长高纯度的金刚石薄膜.  相似文献   

9.
We demonstrate a simple and controllable way to synthesize large-area, few-layer graphene on iron substrates by an optimized chemical vapor deposition (CVD) method using a mixture of methane and hydrogen. Based on an analysis of the Fe-C phase diagram, a suitable procedure for the successful synthesis of graphene on Fe surfaces was designed. An appropriate temperature and cooling process were found to be very important in the synthesis of highly crystalline few-layer graphene. Graphene-based field-effect transistor (FET) devices were fabricated using the resulting few-layer graphene, and showed good quality with extracted mobilities of 300–1150 cm2/(V·s).   相似文献   

10.
《材料科学技术学报》2019,35(12):2942-2949
In this work, the ZrC-SiC composite coatings were co-deposited by chemical vapor deposition (CVD) using ZrCl4, MTS, CH4 and H2 as raw materials. The morphologies, compositions and phases of the composite coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that the morphologies, compositions and phases of the composite coatings were related to the deposition temperature, the flow rate of the carrier H2 gas, and the ratio of C/Zr. Moreover, the co-deposition mechanism of the composite coatings was also studied. It was found that different deposition temperatures resulted in different deposition mechanisms. At temperatures in the range of 1150–1250 °C, the ZrC-SiC co-deposition was controlled by the surface kinetic process. At temperatures in the range of 1250–1400 °C, the ZrC-SiC co-deposition was controlled by the mass transport process.  相似文献   

11.
12.
Dependence of catalyzing materials on deposition of polytetrafluoroethylene (PTFE = ”Teflon” in commercial) films by catalytic chemical vapor deposition (Cat-CVD) method is investigated. It has been clarified that Ni-containing catalyzers has a catalyzing effect that can decompose hexafluoropropylene-oxide (HFPO) to form PTFE films. A novel method named Dual Cat-CVD is also proposed. In the method, carbonized and fluorinated surface of Ni-containing catalyzer is removed and refreshed using atomic hydrogen generated by additionally introduced tungsten (W) catalyzer in the same chamber. This Dual Cat-CVD method enables to recover the deposition rate of PTFE films drastically.  相似文献   

13.
Thin films of organic charge-transfer salts, (TTF)(TCNQ) and (TTF)(DMDCNQI), are prepared by the chemical vapor deposition method, where TTF is tetrathiafulvalene, TCNQ is tetracyanoquinodimethane, and DMDCNQI is dimethyldicyanoquinonediimine. Depending on the substrate temperatures, we have obtained randomly oriented polycrystalline phases composed of relatively large crystals and microcrystalline thin-film phases, which sometimes contain well-grown nanowires. The latter shows much different conducting properties from the bulk crystals, and particularly the (TTF)(DMDCNQI) film is nearly as conductive as the (TTF)(TCNQ) film in spite of the bulk insulating property coming from the mixed-stack crystal structure.  相似文献   

14.
New types of antimicrobial systems are urgently needed owing to the emergence of pathogenic microbial strains that gain resistance to antibiotics commonly used in daily life and medical care. In this study, we developed for the first time a broad-spectrum and robust antimicrobial thin film coating based on large-area chemical vapor deposition (CVD)-grown graphene-wrapped silver nanowires (AgNWs). The antimicrobial graphene/AgNW hybrid coating can be applied on commercial flexible transparent ethylene vinyl acetate/ polyethylene terephthalate (EVA/PET) plastic films by a full roll-to-roll process. The graphene/AgNW hybrid coating showed broad-spectrum antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus), and fungi (Candida albicans). This effect was attributed to a weaker microbial attachment to the ultra-smooth graphene film and the sterilization capacity of Ag+, which is sustainably released from the AgNWs and presumably enhanced by the electrochemical corrosion of AgNWs. Moreover, the robust antimicrobial activity of the graphene/AgNW coating was reinforced by AgNW encapsulation by graphene. Furthermore, the antimicrobial efficiency could be enhanced to ~100% by water electrolysis by using the conductive graphene/AgNW coating as a cathode. We developed a transparent and flexible antimicrobial cover made of graphene/AgNW/EVA/PET and an antimicrobial denture coated by graphene/ AgNW, to show the potential applications of the antimicrobial materials.
  相似文献   

15.
Liquid carbosilane was synthesized and analyzed by infrared (IR) and H-NMR (nuclear magnetic resonance) spectroscopy. Silicon carbide (SiC) powders were prepared by chemical vapor deposition (CVD) at 850°C and 900°C from liquid carbosilanes. The product powders were characterized by IR spectroscopy, X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Results show that liquid carbosilane synthesized was the mixture of several oligomers that had a Si-C backbone. The powders prepared at 850°C contain some organic segments, and those prepared at 900°C are pure nanosized SiC powders, which are partly crystallized, the size of which is about 50–70 nm. Translated from Journal of Functional Materials and Devices, 2006, 12(5): 447–450 (in Chinese)  相似文献   

16.
Abstract

Carbon nanotubes filled with iron oxides can be a promising material for medicine. In this paper, carbon nanotubes containing iron oxides were synthesized by chemical vapor deposition method. Cubic and tetragonal modifications of maghemite Fe2O3 were found inside the nanotubes along with α- and γ-phases of iron and iron carbides by electron microscopy studies. Twins were identified in the tetragonal maghemite with the {103} twinning plane.  相似文献   

17.
Thin films have been prepared by decomposition of hexamethyldisilane (HMDS) by ArF excimer laser at the fixed laser fluence of 800 J m−2 and the substrate temperatures from 300 to 673 K and have been characterized using X-ray diffraction (XRD), scanning electron microscope observation, IR reflection spectroscopy and X-ray photoelectron spectroscopy. The XRD patterns showed the formation of 3C-SiC films but it is suggested that the films obtained at lower substrate temperature include organic functional groups, which might be derived from gaseous reaction products. Hydrogen existing in the form of Si-CH2-Si could be decreased by decreasing the partial pressures of HMDS.  相似文献   

18.
Uniform carbon nanofiber films and nanofiber composite coatings were synthesized from ethylene on nickel coated alumina substrates by laser-assisted catalytic chemical vapor deposition. Laser annealing of a 50 nm thick nickel film produced the catalytic nanoparticles. Thermal decomposition of ethylene over nickel nanoparticles was initiated and maintained by an argon ion laser operated at 488 nm. The films were examined by scanning electron microscopy and by transmission electron microscopy. Overall film uniformity and structure were assessed using micro-Raman spectroscopy. Film quality was related to the experimental parameters such as incident laser power density and irradiation time. For long irradiation times, carbon can be deposited by a thermal process rather than by a catalytic reaction directly over the nanofiber films to form carbon nanocomposite coatings. The process parameters leading to high quality nanofiber films free of amorphous carbon by-products as well as those leading to nanofiber composite coatings are presented.  相似文献   

19.
The synthesis of graphene on Cu foils has been carried out using a low-pressure chemical vapor deposition (LPCVD) process. Under certain growth conditions apart from the graphene flakes, undesired CuxO nanodots appear. The samples were characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photoemission spectroscopy. On the basis of the results, we investigated the effect of growth parameters such as pressure, methane-to-hydrogen ratio and cooling atmosphere on the growth rate, the composition, especially the cleanliness of graphene by scanning electron microscopy in detail. It is shown that the obtained film is quite sensitive on the preparation conditions and the appearance of CuxO nanodots is preventable.  相似文献   

20.
Malancha Gupta 《Thin solid films》2006,515(4):1579-1584
The initiated chemical vapor deposition (iCVD) of poly(glycidyl methacrylate) (PGMA) was scaled up using dimensionless analysis. In the first stage, PGMA was deposited onto a large stationary substrate and a deposition rate as high as 85 nm/min was achieved. It was found that the deposition rate increases with increasing filament temperature, whereas the deposition rate and the number-average molecular weight decrease with increasing substrate temperature. In the second stage, PGMA was deposited onto a moving substrate. At speeds between 20 mm/min and 60 mm/min, the deposition rate on the moving substrate was found to be equal to the deposition rate on the stationary substrate. Fourier transform infrared spectroscopy showed that the epoxide functionality of the PGMA films was retained during the iCVD process. Since the iCVD polymerization of different vinyl monomers all use similar parameters, this scale up can be applied to the scale up of other vinyl monomers such as 2-hydroxyethyl methacrylate and perfluoroalkyl ethyl methacrylate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号