首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 555 毫秒
1.
Manipulating materials at the nanometer scale is challenging, particularly if alignment with nanoscale electrodes is desired. Here, we describe a lithography-free, self-aligned nanotrench ablation (SANTA) technique to create nanoscale “trenches” in a polymer like poly(methyl methacrylate) (PMMA). The nanotrenches are self-aligned with carbon nanotube (CNT) or graphene ribbon electrodes through a simple Joule heating process. Using simulations and experiments we investigated how the Joule power, ambient temperature, PMMA thickness, and substrate properties affect the spatial resolution of this technique. We achieved sub-20 nm nanotrenches, for the first time, by lowering the ambient temperature and reducing the PMMA thickness. We also demonstrated a functioning nanoscale resistive memory (RRAM) bit selfaligned with a CNT control device, achieved through the SANTA approach. This technique provides an elegant and inexpensive method to probe nanoscale devices using self-aligned electrodes, without the use of conventional alignment or lithography steps.
  相似文献   

2.
Molecular dynamics simulations showed that a basal carbon nanotube can activate and guide the fabrication of single-walled carbon nanotubes (CNTs) on its internal surface by self-assembly of edge-unpassivated graphene nanoribbons with defects. Furthermore, the distribution of defects on self-assembled CNTs is controllable. The system temperature and defect fraction are two main factors that influence the success of self-assembly. Due to possible joint flaws formed at the boundaries under a relatively high constant temperature, a technique based on increasing the temperature is adopted. Self-assembly is always successful for graphene nanoribbons with relatively small defect fractions, while it will fail in cases with relatively large ones. Similar to the self-assembly of graphene nanoribbons with defects, graphene nanoribbons with different types of dopants can also be self-assembled into carbon nanotubes. The finding provides a possible fabrication technique not only for carbon nanotubes with metallic or semi-conductive properties but also for carbon nanotubes with electromagnetic induction characteristics.
  相似文献   

3.
In this study, a potentially universal new strategy is reported for the large-scale, low-cost fabrication of visible-light-active highly ordered heteronanostructures based on the spontaneous photoelectric-field-enhancement effect inherent in pyramidal morphology. The hierarchical vertically oriented arrayed structures comprise an active molecular co-catalyst at the apex of a visible-light-active large band gap semiconductor for low-cost solar water splitting in a neutral aqueous medium without the use of a sacrificial agent.
  相似文献   

4.
Flexible and free-standing well-aligned carbon nanotube arrays have been synthesized on super-aligned carbon nanotube films. The combined structure of the carbon nanotube array and carbon nanotube film was formed during chemical vapor deposition on a quartz substrate which had previously been covered with a super-aligned carbon nanotube film. It was found that the growing carbon nanotube array could support up the super-aligned carbon nanotube film entirely, and the top of the array became densely entangled with the super-aligned carbon nanotube film. The carbon nanotube array with the super-aligned carbon nanotube film could be easily peeled off from the quartz substrate as a whole, giving a flexible and free-standing structure with good mechanical properties. The bottom of the array was also exposed after being peeled off and was used as a field emitter. The combined structure of the carbon nanotube array with the carbon nanotube film allowed adsorbent-free field emission by passing a heating current through it. Furthermore, due to the fast thermal response of the structure and the long time needed for re-adsorption of adsorbates in vacuum, it was found that pulsed heating with a 10% duty ratio was sufficient for adsorbent-free field emission. The heating power necessary to sustain the adsorbent-free state can be lowered in this way.
  相似文献   

5.
A thermal emitter composed of a frequency-selective surface metamaterial layer and a hexagonal boron nitride-encapsulated graphene filament is demonstrated. The broadband thermal emission of the metamaterial (consisting of ring resonators) was tailored into two discrete bands, and the measured reflection and emission spectra agreed well with the simulation results. The high modulation frequencies that can be obtained in these devices, coupled with their operation in air, confirm their feasibility for use in applications such as gas sensing.
  相似文献   

6.
Metal nanowire networks represent a promising candidate for the rapid fabrication of transparent electrodes with high transmission and low sheet-resistance values at very low deposition temperatures. A commonly encountered challenge in the formation of conductive nanowire electrodes is establishing high-quality electronic contact between nanowires to facilitate long-range current transport through the network. A new system involving nanowire ligand removal and replacement with a semiconducting sol-gel tin oxide matrix has enabled the fabrication of high-performance transparent electrodes at dramatically reduced temperatures with minimal need for post-deposition treatment.
  相似文献   

7.
Bottom-up synthesis of graphene nanoribbons (GNRs) by surface-assisted polymerization and cyclodehydrogenation of specifically designed precursor monomers has been shown to yield precise edges and doping. Here we use a precursor monomer containing sulfur atoms to fabricate nanostructures on a Au(111) surface at different annealing temperatures. The nanostructures have distinct configurations, varying from sulfur-doped polymers to sulfur-doped chevron-type GNRs (CGNRs) and, finally, pristine graphene nanoribbons with specific edges of periodic five-member carbon rings. Non-contact atomic force microscopy provides clear evidence for the cleavage of C–S bonds and formation of pristine CGNRs at elevated annealing temperatures. First-principles calculations show that the CGNRs exhibit negative differential resistance.
  相似文献   

8.
Sandwich structured graphene-wrapped FeS-graphene nanoribbons (G@FeS-GNRs) were developed. In this composite, FeS nanoparticles were sandwiched between graphene and graphene nanoribbons. When used as anodes in lithium ion batteries (LIBs), the G@FeS-GNR composite demonstrated an outstanding electrochemical performance. This composite showed high reversible capacity, good rate performance, and enhanced cycling stability owing to the synergy between the electrically conductive graphene, graphene nanoribbons, and FeS. The design concept developed here opens up a new avenue for constructing anodes with improved electrochemical stability for LIBs.
  相似文献   

9.
Hydrothermal carbonization (HTC) of biomass to produce one-dimensional carbon materials with hierarchical pores is of significant importance. Here, we fabricate composites of MnOx-encapsulated multiporous carbon nanofibers (M-MCNFs) from naturally available carbohydrates through a dopamine-assisted HTC/ templating process. The introduction of dopamine aids in the formation of the morphology of carbon nanofibers (CNFs) by enhancing the interactions between the hard-templates and carbohydrates. The chosen cryptomelane hard-templates, which are superior to traditional hard-templates, are converted into Mn3O4 nanoparticles embedded in multiporous CNFs (MCNFs), eliminating the need for tedious post deposition procedures to introduce redox active sites. Hence, the obtained hybrids with large surface areas, hierarchical pores, and unique structures show great potential in supercapacitors. This economic and sustainable strategy paves a new way for synthesizing MCNFs and metal oxide-encapsulated MCNFs composites from biomass.
  相似文献   

10.
Lithium/sulfur (Li/S) cells have great potential to become mainstream secondary batteries due to their ultra-high theoretical specific energy. The major challenge for Li/S cells is the unstable cycling performance caused by the sulfur’s insulating nature and the high-solubility of the intermediate polysulfide products. Several years of efforts to develop various fancy carbon nanostructures, trying to physically encapsulate the polysulfides, did not yet push the cell’s cycle life long enough to compete with current Li ion cells. The focus of this review is on the recent progress in chemical bonding strategy for trapping polysulfides through employing functional groups and additives in carbon matrix. Research results on understanding the working mechanism of chemical interaction between polysulfides and functional groups (e.g. O–, B–, N–and S–) in carbon matrix, metal-based additives, or polymer additives during charge/discharge are discussed.
  相似文献   

11.
The persistent need for a sustainable energy economy has led researchers to focus on novel energy conversion and storage technologies, inspiring the discovery of smart material designs such as hierarchical nanocomposites. These nanocomposites have proven effective in the advancement of energy-based technologies. The synergistic properties of hierarchical nanocomposites composed of two types of two-dimensional layered materials, layered double hydroxides and graphene, have resulted in improved electrochemical as well as photocatalytic performance. Synthetic strategies and their effect on the electrochemical and photocatalytic performance of these nanocomposites as high-performance supercapacitors and water oxidation catalysts are discussed in detail in this review.
  相似文献   

12.
This paper offers a comprehensive overview on the role of nanostructures in the development of advanced anode materials for application in both lithium and sodium-ion batteries. In particular, this review highlights the differences between the two chemistries, the critical effect of nanosize on the electrode performance, as well as the routes to exploit the inherent potential of nanostructures to achieve high specific energy at the anode, enhance the rate capability, and obtain a long cycle life. Furthermore, it gives an overview of nanostructured sodium- and lithium-based anode materials, and presents a critical analysis of the advantages and issues associated with the use of nanotechnology.
  相似文献   

13.
5-hydroxymethylcytosine (5-hmC) is an important epigenetic derivative of cytosine and quantitative detection of 5-hmC could be used as a reliable biomarker for a variety of human diseases. Current technologies used in 5-hmC detection are complicated and time/cost inefficient. In this work, we report the first application of antibody-functionalized carbon nanotube field-effect transistors (CNT-FETs) in quantitative detection of 5-hmC from mouse tissues. This method achieves facile and ultra-sensitive 5-hmC detection based on electrical performance device and avoids complicated processing for DNA samples. The 5-hmC content percentages of normal mouse cerebrum, cerebellum, spleen, lung, liver, and heart samples presented in the genomic DNA were measured as 0.653, 0.573, 0.002, 0.020, 0.076, and 0.009, respectively, which is consistent with previous reports. This technology could be developed into facile routine 5-hmC monitoring devices for clinic human disease diagnoses.
  相似文献   

14.
In this paper, we propose a novel construction of silicon nanowire (SiNW) negative-AND (NAND) logic gates on bendable plastic substrates and describe their electrical characteristics. The NAND logic gates with SiNW channels are capable of operating with a supply voltage as low as 0.8 V, with switching and standby power consumption of approximately 1.1 and 0.068 nW, respectively. Superior electrical characteristics of each SiNW transistor, including steep subthreshold slopes, high I on/off ratio, and symmetrical threshold voltages, are the major factors that enable nanowatt-range power operation of the logic gates. Moreover, the mechanical bendability of the logic gates indicates that they have good and stable fatigue properties.
  相似文献   

15.
Hydrogen production from steam or autothermal alcohol reforming has been widely studied, but these methods require high temperatures and emit CO2. Here, we present a new strategy for the simultaneous room-temperature production of hydrogen and other chemicals without the emission of CO2, via the photoelectrochemical reforming of biomass-derived alcohols. The measured hydrogen quantum efficiencies reach around 80% across the entire visible solar spectrum from 450 to 850 nm, achieving an ultrahigh hydrogen production rate of 7.91 μmol/(min·cm2) under AM 1.5G illumination.
  相似文献   

16.
The single crystalline nanostructure of organic semiconductors provides a very promising class of materials for applications in modern optoelectronic devices. However, morphology control and optoelectronic property modulation of high quality single crystalline samples remain a challenge. Here, we report the morphology-controlled growth of single crystalline nanorod arrays of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). We demonstrate that, unlike PTCDA film, PTCDA nanorods exhibits optical waveguide features, enhanced absorption, and Frenkel excitation emission in the visible region. Additionally, we measured the electrical properties of PTCDA nanorods, including the conductivity along the growth direction of the nanorod, which is roughly 0.61 S·m–1 (much higher than that of pure crystalline PTCDA films).
  相似文献   

17.
Silk is a widely available, edible, biocompatible, and environmentally sustainable natural material. Particulate matter (PM) pollution has drawn considerable attention because it is a serious threat to public health. Herein, we report a human-friendly silk nanofiber air filter, which exhibits superior filtration efficiency for both PM2.5 and submicron particles with obviously low pressure drop and low basis weight compared to typical commercial microfiber air filters. Additionally, other functions such as antibacterial activity could be easily integrated into the silk nanofiber air filters, enabling the fabrication of multifunctional air filters. All the above characteristics, combined with the natural abundance and biocompatibility of silk, suggest a great potential for the use of silk nanofibers as air filters, especially as comfortable and personal air purifiers.
  相似文献   

18.
A facile method was developed to fabricate nitrogen-doped graphene microtubes (N-GMT) with ultra-thin walls of 1–4 nm and large inner voids of 1–2 μm. The successful introduction of nitrogen dopants afforded N-GMT more active sites for significantly enhanced hydrogen evolution reaction (HER) activity, achieving a current density of 10 mA·cm–2 at overpotentials of 0.464 and 0.426 V vs. RHE in 0.1 and 6 M KOH solution, respectively. This HER performance surpassed that of the best metal-free catalyst reported in basic solution, further illustrating the great potential of N-GMT as an efficient HER catalyst for real applications in water splitting and chlor-alkali processes.
  相似文献   

19.
Multiferroic charge-transfer crystals have drawn significant interest due to their simultaneous dipolar and spin ordering. Numerous theoretical and experimental studies have shown that the molecular stacking between donor and acceptor complexes plays an important role in tuning charge-transfer enabled multifunctionality. Herein, we show that the charge-transfer interactions can be controlled by the segregated stack, consisting of polythiophene donor- and fullerene acceptor-based all-conjugated block copolymers. Room temperature magnetic field effects, ferroelectricity, and anisotropic magnetism are observed in charge-transfer crystals, which can be further controlled by photoexcitation and charge doping. Furthermore, the charge-transfer segregated stack crystals demonstrate external stimuli controlled polarization and magnetization, which opens up their multifunctional applications for all-organic multiferroics.
  相似文献   

20.
We report a fuel-free, near-infrared (NIR)-driven Janus microcapsule motor. The Janus microcapsule motors were fabricated by template-assisted polyelectrolyte layer-by-layer assembly, followed by spraying of a gold layer on one side. The NIR-powered Janus motors achieved high propulsion with a maximum speed of 42 µm·s-1 in water. The propulsion mechanism of the Janus motor was attributed to the self-thermophoresis effect: The asymmetric distribution of the gold layer generated a local thermal gradient, which in turn generated thermophoretic force to propel the Janus motor. Such NIR-propelled Janus capsule motors can move efficiently in cell culture medium and have no obvious effects on the cell at the power of the NIR laser, indicating considerable promise for future biomedical applications.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号