首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In-plane symmetry is an important contributor to the physical properties of two-dimensional layered materials, as well as atomically thin heterojunctions. Here, we demonstrate anisotropic/isotropic van der Waals (vdW) heterostructures of ReS2 and MoS2 monolayers, where interlayer coupling interactions and charge separation were observed by in situ Raman-photoluminescence spectroscopy, electrical, and photoelectrical measurements. We believe that these results could be helpful for understanding the fundamental physics of atomically thin vdW heterostructures and creating novel electronic and optoelectronic devices.
  相似文献   

2.
Multi-shelled CoFe2O4 hollow microspheres with a tunable number of layers (1–4) were successfully synthesized via a facile one-step method using cyclodextrin as a template, followed by calcination. The structural features, including the shell number and shell porosity, were controlled by adjusting the synthesis parameters to produce hollow spheres with excellent capacity and durability. This is a straightforward and general strategy for fabricating metal oxide or bimetallic metal oxide hollow microspheres with a tunable number of shells.
  相似文献   

3.
Bismuth telluride (Bi2Te3) is one of the most important commercial thermoelectric materials. In recent years, the discovery of topologically protected surface states in Bi chalcogenides has paved the way for their application in nanoelectronics. Determination of the fracture toughness plays a crucial role for the potential application of topological insulators in flexible electronics and nanoelectromechanical devices. Using depth-sensing nanoindentation tests, we investigated for the first time the fracture toughness of bulk single crystals of Bi2Te3 topological insulators, grown using the Bridgman-Stockbarger method. Our results highlight one of the possible pitfalls of the technology based on topological insulators.
  相似文献   

4.
The size and density of Ag nanoparticles on n-layer MoS2 exhibit thicknessdependent behavior. The size and density of these particles increased and decreased, respectively, with increasing layer number (n) of n-layer MoS2. Furthermore, the surface-enhanced Raman scattering (SERS) of Ag on this substrate was observed. The enhancement factor of this scattering varied with the thickness of MoS2. The mechanisms governing the aforementioned thickness dependences are proposed and discussed.
  相似文献   

5.
In this paper, we describe the facile and effective preparation of a series of cobalt-doped Fe3O4 nanocatalysts via chemical coprecipitation in an aqueous solution. The catalyst allowed the hydrogenation of chloronitrobenzenes to chloroanilines (CAs) to proceed at low temperatures in absolute water and at atmospheric pressure, resulting in approximately 100% yield and selectivity. Several factors that influence the yield of CAs were investigated. The results showed that the suitable dosage of the catalyst was ~10 mol.% of the substrate, and the optimal reaction time, reaction temperature, and reaction pressure were 20 min, 80 °C, and atmospheric pressure, respectively. Under the optimal reaction conditions, the CA yield was as high as 98.4%, and the nitro reduction rate reached 100%, which indicates the excellent selectivity of the homemade catalyst. This process also overcomes the environmental pollution harms associated with the traditional process.
  相似文献   

6.
Two-dimensional ZrS2 materials have potential for applications in nanoelectronics because of their theoretically predicted high mobility and sheet current density. Herein, we report the thickness and temperature dependent transport properties of ZrS2 multilayers that were directly deposited on hexagonal boron nitride (h-BN) by chemical vapor deposition. Hysteresis-free gate sweeping, metalinsulator transition, and T γ (γ ~ 0.82–1.26) temperature dependent mobility were observed in the ZrS2 films.
  相似文献   

7.
Herein, we report a bottom-up solvothermal route to synthesize a flexible, highly efficient MoS2@SWNT electrocatalyst for hydrogen evolution reactions (HER). Characterization revealed that branch-like MoS2 nanosheets containing sulfurrich sites were in situ uniformly dispersed on free-standing single-walled carbon nanotube (SWNT) film, which could expose more unsaturated sulfur atoms, allowing excellent electrical contact with active sites. The flexible catalyst exhibited excellent HER performance with a low overpotential (~150 mV at 10 mA/cm2) and small Tafel slope (41 mV/dec). To further explain the improved performance, the local electronic structure was investigated by X-ray absorption near-edge structure (XANES) analysis, proving the presence of unsaturated sulfur atoms and strong electronic coupling between MoS2 and SWNT. This study provides an in-situ synthetic route to create new multifunctional flexible hybridized catalysts and useful insights into the relationships among the catalyst microstructure, electronic structure, and properties.
  相似文献   

8.
Manipulating the alignment of liquid crystals (LCs) is a hot and fundamental issue for their applications in block copolymers, photonics, actuators, biosensors, and liquid-crystal displays. Here, the surface characteristic of Cu2O nanocrystals was well controlled to manipulate the orientation of the LCs. The mechanism of the orientation of the LCs induced by Cu2O nanocrystals was elucidated based on the interaction between the LCs and Cu2O nanocrystals. To comprehensively prove our assumption, different types of LCs (nematic, cholesteric, and smectic) as well as the same type of LCs with different polarities were selected in our system. Moreover, the photomechanical behaviors of the LC polymer composites demonstrated that the alignment of LCs can be effectively manipulated using Cu2O nanocrystals.
  相似文献   

9.
Nanomaterials with unique edge sites have received increasing attention due to their superior performance in various applications. Herein, we employed an effective ethylenediaminetetraacetic acid (EDTA)-assisted method to synthesize a series of exotic Bi2Se3 nanostructures with distinct edge sites. It was found that the products changed from smooth nanoplates to half-plate-containing and crown-like nanoplates upon increasing the molar ratio of EDTA to Bi3+. Mechanistic studies indicated that, when a dislocation source and relatively high supersaturation exist, the step edges in the initially formed seeds can serve as supporting sites for the growth of epilayers, leading to the formation of half-plate-containing nanoplates. In contrast, when the dislocation source and a suitably low supersaturation are simultaneously present in the system, the dislocation-driven growth mode dominates the process, in which the step edges form at the later stage of the growth responsible for the formation of crown-like nanoplates.
  相似文献   

10.
Nanomaterials with electrochemical activity are always suffering from aggregations, particularly during the high-temperature synthesis processes, which will lead to decreased energy-storage performance. Here, hierarchically structured lithium titanate/nitrogen-doped porous graphene fiber nanocomposites were synthesized by using confined growth of Li4Ti5O12 (LTO) nanoparticles in nitrogen-doped mesoporous graphene fibers (NPGF). NPGFs with uniform pore structure are used as templates for hosting LTO precursors, followed by high-temperature treatment at 800 °C under argon (Ar). LTO nanoparticles with size of several nanometers are successfully synthesized in the mesopores of NPGFs, forming nanostructured LTO/NPGF composite fibers. As an anode material for lithium-ion batteries, such nanocomposite architecture offers effective electron and ion transport, and robust structure. Such nanocomposites in the electrodes delivered a high reversible capacity (164 mAh·g–1 at 0.3 C), excellent rate capability (102 mAh·g–1 at 10 C), and long cycling stability.
  相似文献   

11.
Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing ~90 ppmg?1·h?1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.
  相似文献   

12.
Because of the coupling between semiconducting and piezoelectric properties in wurtzite materials, strain-induced piezo-charges can tune the charge transport across the interface or junction, which is referred to as the piezotronic effect. For devices whose dimension is much smaller than the mean free path of carriers (such as a single atomic layer of MoS2), ballistic transport occurs. In this study, transport in the monolayer MoS2 piezotronic transistor is studied by presenting analytical solutions for two-dimensional (2D) MoS2. Furthermore, a numerical simulation for guiding future 2D piezotronic nanodevice design is presented.
  相似文献   

13.
Novel gold-supporting silicate nanotubes are synthesized via a hydrothermal method followed by colloid deposition. Their catalytic performance for the selective oxidation of ethanol to acetaldehyde is assessed. The results show that Au/CuSiO3 nanotubes exhibit both high activity and selectivity at high gas hourly space velocity (GHSV). Ethanol conversion can reach up to ~98%, and the selectivity for acetaldehyde is ~93% at 250 °C and ~100,000 mL·gcat–1·h–1. In comparison, the catalytic activity of Au/MgSiO3 nanotubes is relatively low, and ethanol conversion reaches only ~25% at 250 °C. However, when Cu species are added to Au/MgSiO3, the catalytic activity improves significantly, indicating that the interactions between Au nanoparticles and Cu species are responsible for the high performance for selective oxidation of ethanol to acetaldehyde.
  相似文献   

14.
We systematically investigated the development of film morphology and crystallinity of methyl-ammonium bismuth (III) iodide (MA3Bi2I9) through onestep spin-coating on TiO2-deposited indium tin oxide (ITO)/glass. The precursor solution concentration and substrate structure have been demonstrated to be critically important in the active-layer evolution of the MA3Bi2I9-based solar cell. This work successfully improved the cell efficiency to 0.42% (average: 0.38%) with the mesoscopic architecture of ITO/compact-TiO2/mesoscopic-TiO2 (meso-TiO2)/MA3Bi2I9/2,2′,7,7′-tetrakis(N,N-di-4-methoxyphenylamino)-9,9′spiro-bifluorene (spiro-MeOTAD)/MoO3/Ag under a precursor concentration of 0.45 M, which provided the probability of further improving the efficiency of the Bi3+-based lead-free organic–inorganic hybrid solar cells.
  相似文献   

15.
Systemic thrombolysis with intravenous tissue plasminogen activator (tPA) remains the only proven treatment that is effective in improving the clinical outcome of patients with acute ischemic stroke. However, thrombolytic therapy has some major limitations such as hemorrhage, neurotoxicity, and the short time window for the treatment. In this study, we designed iron oxide (Fe3O4) nanorods loaded with 6% tPA, which could be released within ~30 min. The Fe3O4 nanorods could be targeted to blood clots under magnetic guidance. In addition, the release of tPA could be significantly increased using an external rotating magnetic field, which subsequently resulted in a great improvement in the thrombolytic efficiency. Systematic and quantitative studies revealed the fundamental physical processes involved in the enhanced thrombolysis, while the in vitro thrombolysis assay showed that the proposed strategy could improve thrombolysis and recanalization rates and reduce the risk of tPA-mediated hemorrhage in vivo. Such a strategy will be very useful for the treatment of ischemic stroke and other deadly thrombotic diseases such as myocardial infarction and pulmonary embolism in clinical settings.
  相似文献   

16.
The construction of metal sulfides-carbon nanocomposites with a hollow structure is highly attractive for various energy storage and conversion technologies. Herein, we report a facile two-step method for preparing a nanocomposite with CoS2 nanoparticles in N-doped carbon nanotube hollow frameworks (NCNTFs). Starting from zeolitic imidazolate framework-67 (ZIF-67) particles, in situ reduced metallic cobalt nanocrystals expedite the formation of the hierarchical hollow frameworks from staggered carbon nanotubes via a carbonization process. After a follow-up sulfidation reaction with sulfur powder, the embedded cobalt crystals are transformed into CoS2 nanoparticles. Benefitting from the robust hollow frameworks made of N-doped carbon nanotubes and highly active CoS2 ultrafine nanoparticles, this advanced nanocomposite shows greatly enhanced lithium storage properties when evaluated as an electrode for lithium-ion batteries. Impressively, the resultant CoS2/NCNTF material delivers a high specific capacity of ~937 mAh·g–1 at a current density of 1.0 A·g–1 with a cycle life longer than 160 cycles.
  相似文献   

17.
Artificial photosynthesis uses a catalyst to convert CO2 into valuable hydrocarbon products by cleaving the C=O bond. However, this technology is strongly limited by two issues, namely insufficient catalytic efficiency and complicated catalyst-fabrication processes. Herein, we report the development of a novel spray-drying photocatalyst-engineering process that addresses these two issues. Through one-step spray drying, with a residence time of 1.5 s, nanocomposites composed of tin oxide (SnO2) nanoparticles and edge-oxidized graphene oxide (eo-GO) sheets were fabricated without post-treatment. These nanocomposites exhibited 28-fold and five-fold enhancements in photocatalytic efficiency during CO2 reduction compared to SnO2 and commercialized TiO2 (P25), respectively, after irradiation with simulated sunlight for 4 h. This scalable approach, based on short residence times and facile equipment setup, promotes the practical application of artificial photosynthesis through the potential mass production of efficient photocatalysts.
  相似文献   

18.
The oxygen reduction reaction (ORR) is essential in research pertaining to life science and energy. In applications, platinum-based catalysts give ideal reactivity, but, in practice, are often subject to high costs and poor stability. Some cost-efficient transition metal oxides have exhibited excellent ORR reactivity, but the stability and durability of such alternative catalyst materials pose serious challenges. Here, we present a facile method to fabricate uniform Co x O y nanoparticles and embed them into N-doped carbon, which results in a composite of extraordinary stability and durability, while maintaining its high reactivity. The half-wave potential shows a negative shift of only 21 mV after 10,000 cycles, only one third of that observed for Pt/C (63 mV). Furthermore, after 100,000 s testing at a constant potential, the current decreases by only 17%, significantly less than for Pt/C (35%). The exceptional stability and durability results from the system architecture, which comprises a thin carbon shell that prevents agglomeration of the Co x O y nanoparticles and their detaching from the substrate.
  相似文献   

19.
In this study, a potentially universal new strategy is reported for the large-scale, low-cost fabrication of visible-light-active highly ordered heteronanostructures based on the spontaneous photoelectric-field-enhancement effect inherent in pyramidal morphology. The hierarchical vertically oriented arrayed structures comprise an active molecular co-catalyst at the apex of a visible-light-active large band gap semiconductor for low-cost solar water splitting in a neutral aqueous medium without the use of a sacrificial agent.
  相似文献   

20.
Catalytic hydrogenation is an important process in the chemical industry. Traditional catalysts require the effective cleavage of hydrogen molecules on the metal-catalyst surface, which is difficult to achieve with non-noble metal catalysts. In this work, we report a new hydrogenation method based on water/proton reduction, which is completely different from the catalytic cleavage of hydrogen molecules. Active hydrogen species and photo-generated electrons can be directly applied to the hydrogenation process with Cu1.94S-Zn0.23Cd0.77S semiconductor heterojunction nanorods. Nitrobenzene, with a variety of substituent groups, can be efficiently reduced to the corresponding aniline without the addition of hydrogen gas. This is a novel and direct pathway for hydrogenation using non-noble metal catalysts.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号