首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial processes for energy conversion/storage systems, such as fuel cells, metal–air batteries, and water splitting. However, both reactions are severely restricted by their sluggish kinetics, thus requiring highly active, cost-effective, and durable electrocatalysts. Herein, we develop novel bifunctional nanocatalysts through surface nanoengineering of dealloying-driven nanoporous gold (NPG). Pd overlayers were precisely deposited onto the NPG ligament surface by epitaxial layer-by-layer growth. More importantly, the obtained NPG-Pd overlayer nanocatalysts exhibit remarkably enhanced electrocatalytic activities toward both the ORR and OER in alkaline media, benchmarked against a stateof- the-art Pt/C catalyst. The improved electrocatalytic performance is rationalized by the unique three-dimensional nanoarchitecture of NPG, enhanced Pd utilization efficiency from precise control of the Pd overlayers, and change in electronic structure, as revealed by density functional theory calculations.
  相似文献   

2.
In this study, a potentially universal new strategy is reported for the large-scale, low-cost fabrication of visible-light-active highly ordered heteronanostructures based on the spontaneous photoelectric-field-enhancement effect inherent in pyramidal morphology. The hierarchical vertically oriented arrayed structures comprise an active molecular co-catalyst at the apex of a visible-light-active large band gap semiconductor for low-cost solar water splitting in a neutral aqueous medium without the use of a sacrificial agent.
  相似文献   

3.
We demonstrate an easy and scalable low-temperature process to convert porous ternary complex metal oxide nanoparticles from solution-synthesized core/shell metal oxide nanoparticles by thermal annealing. The final products demonstrate superior electrochemical properties with a large capacity and high stability during fast charging/discharging cycles for potential applications as advanced lithium-ion battery (LIB) electrode materials. In addition, a new breakdown mechanism was observed on these novel electrode materials.
  相似文献   

4.
Sandwich structured graphene-wrapped FeS-graphene nanoribbons (G@FeS-GNRs) were developed. In this composite, FeS nanoparticles were sandwiched between graphene and graphene nanoribbons. When used as anodes in lithium ion batteries (LIBs), the G@FeS-GNR composite demonstrated an outstanding electrochemical performance. This composite showed high reversible capacity, good rate performance, and enhanced cycling stability owing to the synergy between the electrically conductive graphene, graphene nanoribbons, and FeS. The design concept developed here opens up a new avenue for constructing anodes with improved electrochemical stability for LIBs.
  相似文献   

5.
Developing efficient water-splitting electrocatalysts, particularly for the anodic oxygen evolution reaction (OER), is an important challenge in energy conversion technologies. In this study, we report the development of iron-doped nickel disulfide nanoarray on Ti mesh (Fe0.1-NiS2 NA/Ti) via the sulfidation of its nickel–iron-layered double hydroxide precursor (NiFe-LDH NA/Ti). As a three-dimensional OER anode, Fe0.1-NiS2 NA/Ti exhibits remarkable activity and stability in 1.0 M KOH, with the requirement of a low overpotential of 231 mV to achieve 100 mA·cm?2. In addition, it exhibits excellent activity and durability in 30 wt.% KOH. Notably, this electrode is also efficient for the cathodic hydrogen evolution reaction under alkaline conditions.
  相似文献   

6.
Formic acid oxidation is an important electrocatalytic reaction in protonexchange membrane (PEM) fuel cells, in which both active sites and species adsorption/activation play key roles. In this study, we have developed hollow Pd-Ag alloy nanostructures with high active surface areas for application to electrocatalytic formic acid oxidation. When a certain amount of Ag is incorporated into a Pd lattice, which is already a highly active material for formic acid oxidation, the electrocatalytic activity can be significantly boosted. As indicated by theoretical simulations, coupling between Pd and Ag induces polarization charges on Pd catalytic sites, which can enhance the adsorption of HCOO* species. As a result, the designed electrocatalysts can achieve reduced Pd usage and enhanced catalytic properties at the same time. This study represents an approach that simultaneously fabricates hollow structures to increase the number of active sites and utilizes interatomic interactions to tune species adsorption/activation towards improved electrocatalytic performance.
  相似文献   

7.
By means of vibrational spectroscopy and density functional theory (DFT), we investigate CO adsorption on phosphorene-based systems. We find stable CO adsorption at room temperature on both phosphorene and bulk black phosphorus. The adsorption energy and vibrational spectrum are calculated for several possible configurations of the CO overlayer. We find that the vibrational spectrum is characterized by two different C–O stretching energies. The experimental data are in good agreement with the prediction of the DFT model and reveal the unusual C–O vibrational band at 165–180 meV, activated by the lateral interactions in the CO overlayer.
  相似文献   

8.
The persistent need for a sustainable energy economy has led researchers to focus on novel energy conversion and storage technologies, inspiring the discovery of smart material designs such as hierarchical nanocomposites. These nanocomposites have proven effective in the advancement of energy-based technologies. The synergistic properties of hierarchical nanocomposites composed of two types of two-dimensional layered materials, layered double hydroxides and graphene, have resulted in improved electrochemical as well as photocatalytic performance. Synthetic strategies and their effect on the electrochemical and photocatalytic performance of these nanocomposites as high-performance supercapacitors and water oxidation catalysts are discussed in detail in this review.
  相似文献   

9.
Highly efficient metal-free, carbon-based, bi-functional electrocatalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have attracted increased attention for use in electrochemical energy conversion systems, owing to their low cost and high activity. In this work, N-doped carbon nanocages (N-CCs) with a porous self-supported architecture and high specific surface area are synthesized by a facile interfacial assembly synthetic route. The materials are comprehensively characterized by scanning electron microscopy, transmission electron microscopy, nitrogen adsorption–desorption experiments, X-ray diffraction, and X-ray photoelectron spectroscopy. Cyclic voltammetry, chronoamperometry, and linear sweep voltammetry demonstrate that the as-prepared N-CC could serve as an effective metal-free electrocatalyst with excellent catalytic activity, long-term operation durability, and excellent methanol tolerance for the ORR in alkaline media. In the presence of 3 mM methanol, the half wave potential of the N-CCs for the ORR is 190 mV; this is more positive than that of the commercial Pt/C electrocatalyst. Meanwhile, the N-CCs also show an OER activity comparable to that of the commercial Ru/C electrocatalyst, revealing their bifunctional property.
  相似文献   

10.
The present study explored a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. Highly ionized Fe plasma produced by arc discharge was uniformly deposited on a porous carbon substrate and formed atomic clusters on the carbon surface. The as-prepared FeO x /C material was tested as a cathode material in a rechargeable Li–O2 battery under different current rates. The results showed significant improvement in battery performance in terms of both cycle life and reaction rate. Furthermore, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the as-prepared cathode material stabilized the cathode and reduced side reactions and that the current rate was a critical factor in the nucleation of the discharge products.
  相似文献   

11.
In-plane symmetry is an important contributor to the physical properties of two-dimensional layered materials, as well as atomically thin heterojunctions. Here, we demonstrate anisotropic/isotropic van der Waals (vdW) heterostructures of ReS2 and MoS2 monolayers, where interlayer coupling interactions and charge separation were observed by in situ Raman-photoluminescence spectroscopy, electrical, and photoelectrical measurements. We believe that these results could be helpful for understanding the fundamental physics of atomically thin vdW heterostructures and creating novel electronic and optoelectronic devices.
  相似文献   

12.
RuCu nanocages and core–shell Cu@Ru nanocrystals with ultrathin Ru shells were first synthesized by a one-pot modified galvanic replacement reaction. The construction of bimetallic nanocrystals with fully exposed precious atoms and a high surface area effectively realizes the concept of high atom-efficiency. Compared with the monometallic Ru/C catalyst, both the RuCu nanocages and Cu@Ru core–shell catalysts supported on commercial carbon show superior catalytic performance for the regioselective hydrogenation of quinoline toward 1,2,3,4-tetrahydroquinoline. RuCu nanocages exhibit the highest activity, achieving up to 99.6% conversion of quinoline and 100% selectivity toward 1,2,3,4-tetrahydroquinoline.
  相似文献   

13.
In this paper, we propose a novel construction of silicon nanowire (SiNW) negative-AND (NAND) logic gates on bendable plastic substrates and describe their electrical characteristics. The NAND logic gates with SiNW channels are capable of operating with a supply voltage as low as 0.8 V, with switching and standby power consumption of approximately 1.1 and 0.068 nW, respectively. Superior electrical characteristics of each SiNW transistor, including steep subthreshold slopes, high I on/off ratio, and symmetrical threshold voltages, are the major factors that enable nanowatt-range power operation of the logic gates. Moreover, the mechanical bendability of the logic gates indicates that they have good and stable fatigue properties.
  相似文献   

14.
The size and density of Ag nanoparticles on n-layer MoS2 exhibit thicknessdependent behavior. The size and density of these particles increased and decreased, respectively, with increasing layer number (n) of n-layer MoS2. Furthermore, the surface-enhanced Raman scattering (SERS) of Ag on this substrate was observed. The enhancement factor of this scattering varied with the thickness of MoS2. The mechanisms governing the aforementioned thickness dependences are proposed and discussed.
  相似文献   

15.
We report a fuel-free, near-infrared (NIR)-driven Janus microcapsule motor. The Janus microcapsule motors were fabricated by template-assisted polyelectrolyte layer-by-layer assembly, followed by spraying of a gold layer on one side. The NIR-powered Janus motors achieved high propulsion with a maximum speed of 42 µm·s-1 in water. The propulsion mechanism of the Janus motor was attributed to the self-thermophoresis effect: The asymmetric distribution of the gold layer generated a local thermal gradient, which in turn generated thermophoretic force to propel the Janus motor. Such NIR-propelled Janus capsule motors can move efficiently in cell culture medium and have no obvious effects on the cell at the power of the NIR laser, indicating considerable promise for future biomedical applications.
  相似文献   

16.
Hydrogen production from steam or autothermal alcohol reforming has been widely studied, but these methods require high temperatures and emit CO2. Here, we present a new strategy for the simultaneous room-temperature production of hydrogen and other chemicals without the emission of CO2, via the photoelectrochemical reforming of biomass-derived alcohols. The measured hydrogen quantum efficiencies reach around 80% across the entire visible solar spectrum from 450 to 850 nm, achieving an ultrahigh hydrogen production rate of 7.91 μmol/(min·cm2) under AM 1.5G illumination.
  相似文献   

17.
A facile method was developed to fabricate nitrogen-doped graphene microtubes (N-GMT) with ultra-thin walls of 1–4 nm and large inner voids of 1–2 μm. The successful introduction of nitrogen dopants afforded N-GMT more active sites for significantly enhanced hydrogen evolution reaction (HER) activity, achieving a current density of 10 mA·cm–2 at overpotentials of 0.464 and 0.426 V vs. RHE in 0.1 and 6 M KOH solution, respectively. This HER performance surpassed that of the best metal-free catalyst reported in basic solution, further illustrating the great potential of N-GMT as an efficient HER catalyst for real applications in water splitting and chlor-alkali processes.
  相似文献   

18.
Supercapacitors have high power densities, high efficiencies, and long cycling lifetimes; however, to enable their wider use, their energy densities must be significantly improved. The design and synthesis of improved carbon materials with better capacitance, rate performance, and cycling stability has emerged as the main theme of supercapacitor research. Herein, we report a facile synthetic method to prepare nitrogen-rich carbon particles based on a continuous aerosol-spraying process. The method yields particles that have high surface areas, a uniform microporous structure, and are highly N-doped, resulting in a synergism that enables the construction of supercapacitors with high energy and power density for use in both aqueous and commercial organic electrolytes. Furthermore, we have used density functional theory calculations to show that the improved performance is due to the enhanced wettability and ion adsorption interactions at the carbon/electrolyte interface that result from nitrogen doping. These findings provide new insights into the role of heteroatom doping in the capacitance enhancement of carbon materials; in addition, our method offers an efficient route for large-scale production of doped carbon.
  相似文献   

19.
Silk is a widely available, edible, biocompatible, and environmentally sustainable natural material. Particulate matter (PM) pollution has drawn considerable attention because it is a serious threat to public health. Herein, we report a human-friendly silk nanofiber air filter, which exhibits superior filtration efficiency for both PM2.5 and submicron particles with obviously low pressure drop and low basis weight compared to typical commercial microfiber air filters. Additionally, other functions such as antibacterial activity could be easily integrated into the silk nanofiber air filters, enabling the fabrication of multifunctional air filters. All the above characteristics, combined with the natural abundance and biocompatibility of silk, suggest a great potential for the use of silk nanofibers as air filters, especially as comfortable and personal air purifiers.
  相似文献   

20.
We demonstrate the self-formation of hexagonal nanotemplates on GaAs (111)B substrates patterned with arrays of inverted tetrahedral pyramids during metal-organic vapor phase epitaxy and its role in producing high-symmetry, site-controlled quantum dots (QDs). By combining atomic force microscopy measurements on progressively thicker GaAs epitaxial layers with kinetic Monte Carlo growth simulations, we demonstrate self-maintained symmetry elevation of the QD formation sites from three-fold to six-fold symmetry. This symmetry elevation stems from adatom fluxes directed towards the high-curvature sites of the template, resulting in the formation of a fully three-dimensional hexagonal template after the deposition of relatively thin GaAs layers. We identified the growth conditions for consistently achieving a hexagonal pyramid bottom, which are useful for producing high-symmetry QDs for efficient generation of entangled photons.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号