首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The 67-amino acid cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor (CD-MPR) contains a signal(s) that prevents the receptor from entering lysosomes where it would be degraded. To identify the key residues required for proper endosomal sorting, we analyzed the intracellular distribution of mutant forms of the receptor by Percoll density gradients. A receptor with a Trp19 --> Ala substitution in the cytoplasmic tail was highly missorted to lysosomes whereas receptors with either Phe18 --> Ala or Phe13 --> Ala mutations were partially defective in avoiding transport to lysosomes. Analysis of double and triple mutants confirmed the key role of Trp19 for sorting of the CD-MPR in endosomes, with Phe18, Phe13, and several neighboring residues contributing to this function. The addition of the Phe18-Trp19 motif of the CD-MPR to the cytoplasmic tail of the lysosomal membrane protein Lamp1 was sufficient to partially impair its delivery to lysosomes. Replacing Phe18 and Trp19 with other aromatic amino acids did not impair endosomal sorting of the CD-MPR, indicating that two aromatic residues located at these positions are sufficient to prevent the receptor from trafficking to lysosomes. However, alterations in the spacing of the diaromatic amino acid sequence relative to the transmembrane domain resulted in receptor accumulation in lysosomes. These findings indicate that the endosomal sorting of the CD-MPR depends on the correct presentation of a diaromatic amino acid-containing motif in its cytoplasmic tail. Because a diaromatic amino acid sequence is also present in the cytoplasmic tail of other receptors known to be internalized from the plasma membrane, this feature may prove to be a general determinant for endosomal sorting.  相似文献   

2.
Signals controlling the intracellular targeting of many membrane proteins are present as short sequences within their cytoplasmic domains. P-selectin is a type I membrane protein receptor for leukocytes, acting during the inflammation response. Heterologous expression experiments have demonstrated that its 35-residue cytoplasmic tail contains signals for targeting to synaptic-like microvesicles, dense-cored granules, and lysosomes. We have examined the lysosomal targeting information present within the cytoplasmic tail by site-directed mutagenesis of horseradish peroxidase-P-selectin chimeras followed by transient transfection in H.Ep.2 cells. Assaying lysosomal targeting by subcellular fractionation as well as intracellular proteolysis, we have discovered a novel lysosomal targeting signal, KCPL, located within the C1 domain of the cytoplasmic tail. Alanine substitution of this tetrapeptide reduced lysosomal targeting to the level of a tailless horseradish peroxidase-P-selectin chimera, which was previously found to be deficient in both internalization and delivery to lysosomes. A proline residue within this lysosomal targeting signal makes a major contribution to the efficiency of lysosomal targeting. A diaminobenzidine density shift procedure established that chimeras with an inactivated KCPL sequence are present within transferrin-positive compartments. Such a mutant also displays an increased level of expression at the plasma membrane. Our results indicate that the sequence KCPL within the cytoplasmic tail of P-selectin is a structural element that mediates sorting from endosomes to lysosomes.  相似文献   

3.
G protein-coupled receptors that transduce signals for many hormones, neurotransmitters, and inflammatory mediators are internalized and subsequently recycled to the plasma membrane, or down-regulated by targeting to lysosomes for degradation. Here we have characterized yeast alpha-factor receptors tagged with green fluorescent protein (Ste2-GFP) and used them to obtain mutants defective in receptor down-regulation. In wild type cells, Ste2-GFP was functional and localized to the plasma membrane and endocytic compartments. Although GFP was fused to the cytoplasmic tail of the receptor, GFP also accumulated in the lumen of the vacuole, suggesting that the receptor's extracellular and cytoplasmic domains are degraded within the vacuole lumen. Transposon mutagenesis and a visual screen were used to identify mutants displaying aberrant localization of Ste2-GFP. Mutants that accumulated Ste2-GFP in numerous intracellular vesicles carried disruptions of the VAM3/PTH1 gene, which encodes a syntaxin homolog (t-SNARE) required for homotypic vacuole membrane fusion, autophagy and fusion of biosynthetic transport vesicles with the vacuole. We provide evidence that Vam3 is required for the delivery of alpha-factor receptor-ligand complexes to the vacuole. Vam3 homologs in mammalian cells may mediate late steps in the down-regulation and lysosomal degradation pathways of various G protein-coupled receptors.  相似文献   

4.
The 35-amino acid cytoplasmic tail of the adhesion receptor P-selectin is subdivided into stop transfer, C1 and C2 domains. It contains structural signals needed for targeting this protein to specialized secretory organelles and to lysosomes. Recently, using site-directed mutagenesis of horseradish peroxidase-P-selectin chimeras, we have uncovered a novel sequence within the C1 domain, KCPL, that mediates sorting from early, transferrin-positive endosomes to lysosomes and therefore operates as a positive lysosomal targeting signal (Blagoveshchenskaya, A. D., Norcott, J. P. , and Cutler, D. F. (1998) J. Biol. Chem. 273, 2729-2737). In the current study, we examined lysosomal targeting by both subcellular fractionation and an intracellular proteolysis assay and found that a balance of positive and negative signals is required for proper lysosomal sorting of P-selectin. First, we have found that within the sequence KCPL, Cys-766 plays a major role along with Pro-767, whereas Lys-765 and Leu-768 make no contribution to promoting lysosomal targeting. In addition, horseradish peroxidase-P-selectin chimeras were capable of acylation in vivo with [3H]palmitic acid at Cys-766, since no labeling of a chimera in which Cys-766 was replaced with Ala was detected. Second, analysis of mutations within the C2 domain revealed that substitution of two sequences, YGVF and DPSP, causes an increase in both lysosomal targeting and intracellular proteolysis suggesting the presence of lysosomal avoidance signals. The inhibition or promotion of lysosomal targeting resulted from alterations in endosomal sorting since internalization was not changed in parallel with lysosomal delivery. Analysis of the double mutants KCPL/YGVF or KCPL/DPSP revealed that although the positive lysosomal targeting signal operates in the early/sorting transferrin-positive endosomes, the negative lysosomal targeting (lysosomal avoidance) signals act at later stages of the endocytic pathway, most likely in late endosomal compartments.  相似文献   

5.
A soluble truncated form of the cation-dependent mannose 6-phosphate receptor (CD-MPR) encoding only the extracytoplasmic region, Stop155, and a truncated glycosylation-deficient form of the CD-MPR, Asn81/Stop155, which has been modified to contain only one N-linked glycosylation site at position 81 instead of five, were purified from baculovirus-infected High Five insect cells. The glycosylated recombinant proteins were functional in ligand binding and acid-dependent dissociation as assessed by pentamannosyl phosphate-agarose affinity chromatography. Gel filtration, sucrose gradients, and cross-linking experiments revealed that both Stop155 and Asn81/Stop155 are dimeric, demonstrating that the transmembrane and cytoplasmic region of the receptor as well as N-linked oligosaccharides at positions 31, 57, and 87 are not required for dimerization. The Kd of Stop155 and Asn81/Stop155 for the lysosomal enzyme, beta-glucuronidase, was 0.2 and 0.3 nM, respectively. These values are very similar to those reported for the full-length CD-MPR, demonstrating that the extracellular region of the CD-MPR is sufficient for high-affinity binding and that oligosaccharides at positions 31, 57, and 87 do not influence ligand binding.  相似文献   

6.
Vaccinia extracellular enveloped virus (EEV) is important for cell-to-cell and long-range virus spread both in vitro and in vivo. Six genes have been identified that encode protein constituents of the EEV outer membrane, and some of these proteins are critical for EEV formation. The B5R gene encodes an EEV-specific type I membrane protein, and deletion of this gene markedly decreases EEV formation and results in a small plaque phenotype. Data suggest that the transmembrane domain, cytoplasmic tail, or both contain the EEV localization signals that are required for targeting of the B5R protein to EEV and for EEV formation. Here, we report the construction of mutant vaccinia viruses in which the wild-type B5R gene was replaced with a mutated one that encodes a protein with the putative cytoplasmic tail deleted. The mutated protein showed normal intracellular distribution and was properly incorporated into EEV. Vaccinia viruses expressing the B5R protein lacking the cytoplasmic tail formed plaques that were similar in type and size to those formed by wild-type viruses and produced equivalent amounts of infectious EEV. These results indicate that the B5R cytoplasmic tail is not necessary for EEV formation and points to the transmembrane domain as the major determinant for targeting the B5R protein to the outer membrane of EEV and for supporting EEV formation.  相似文献   

7.
The molecular mechanisms regulating recruitment of intracellular signaling proteins like growth factor receptor-bound protein 2 (Grb2), phospholipase Cgamma1, or phosphatidylinositol 3-kinase (PI3-kinase) to the plasma membrane after stimulation of the T cell receptor (TCR)- CD3-zeta complex are not very well understood. We describe here purification, tandem mass spectrometry sequencing, molecular cloning, and biochemical characterization of a novel transmembrane adaptor protein which associates and comodulates with the TCR-CD3-zeta complex in human T lymphocytes and T cell lines. This protein was termed T cell receptor interacting molecule (TRIM). TRIM is a disulfide-linked homodimer which is comprised of a short extracellular domain of 8 amino acids, a 19-amino acid transmembrane region, and a 159-amino acid cytoplasmic tail. In its intracellular domain, TRIM contains several tyrosine-based signaling motifs that could be involved in SH2 domain-mediated protein-protein interactions. Indeed, after T cell activation, TRIM becomes rapidly phosphorylated on tyrosine residues and then associates with the 85-kD regulatory subunit of PI3-kinase via an YxxM motif. Thus, TRIM represents a TCR-associated transmembrane adaptor protein which is likely involved in targeting of intracellular signaling proteins to the plasma membrane after triggering of the TCR.  相似文献   

8.
The two known mannose 6-phosphate receptors (MPR46 and MPR300) both mediate the transport of Man-6-P-containing lysosomal proteins to lysosomes. However, the MPRs cannot be detected in lysosomes, instead they recycle between the plasma membrane and endosomes and between endosomes and the trans-Golgi network. Both, endocytosis from the plasma membrane and budding of transport vesicles from the trans-Golgi network involves the interaction of the receptor with the clathrin-coated vesicles-associated protein complexes AP1 and AP2. We have analyzed this interaction between the Golgi-restricted AP1 complex and the plasma membrane-restricted AP2 complex with the MPR46 tail in vitro by using a biosensor. AP1 and AP2 both bind to and dissociate from the MPR46 tail with similar kinetics. Using synthetic peptides corresponding to different MPR receptor tail regions in inhibition and binding studies, a common high affinity binding site for AP1 and AP2 and two separate high affinity binding sites for AP1 and AP2, respectively, were identified.  相似文献   

9.
The neuregulins are receptor tyrosine kinase ligands that play a critical role in the development of the heart, nervous system, and breast. Unlike many extracellular signaling molecules, such as the neurotrophins, most neuregulins are synthesized as transmembrane proteins. To determine the functions of the highly conserved neuregulin cytoplasmic tail, a yeast two-hybrid screen was performed to identify proteins that interact with the 157-amino acid sequence common to the cytoplasmic tails of all transmembrane neuregulin isoforms. This screen revealed that the neuregulin cytoplasmic tail interacts with the LIM domain region of the nonreceptor protein kinase LIM kinase 1 (LIMK1). Interaction between the neuregulin cytoplasmic tail and full-length LIMK1 was demonstrated by in vitro binding and co-immunoprecipitation assays. Transmembrane neuregulins with each of the three known neuregulin cytoplasmic tail isoforms interacted with LIMK1. In contrast, the cytoplasmic tail of TGF-alpha did not interact with LIMK1. In vivo, neuregulin and LIMK1 are co-localized at the neuromuscular synapse, suggesting that LIMK1, like neuregulin, may play a role in synapse formation and maintenance. To our knowledge, LIMK1 is the first identified protein shown to interact with the cytoplasmic tail of a receptor tyrosine kinase ligand.  相似文献   

10.
We recently identified a 28-kDa protein in the intestinal brush border that resembled tropomyosin in terms of size, homology, and alpha helical content. This protein contained 27 heptad repeats, nearly all of which began with leucine, leading to its name zipper protein. Subsequent analysis, however, indicated that both a 49-kDa and a 28-kDa immunoreactive protein existed in intestinal brush-border extracts. Using 5'-rapid amplification of cDNA ends analysis, we extended the N-terminal sequence of zipper protein to the apparent translation start site. This additional sequence contained a putative transmembrane domain and two potential tryptic cleavage sites C-terminal to the transmembrane domain which would release a 28-kDa cytoplasmic protein if utilized. The additional sequence was highly homologous to members of the B-G protein family, a family with no known function. Immunoelectron microscopy showed that zipper protein was confined to the membrane of the microvillus where it was in close association with brush-border myosin 1 (BBM1). Recombinant zipper protein (28-kDa cytoplasmic portion) blocked the binding of actin to BBM1 and inhibited actin-stimulated BBM1 ATPase activity. In contrast, zipper protein had no effect on endogenous or K/EDTA-stimulated BBM1 ATPase activity. Furthermore, zipper protein displaced tropomyosin from binding to actin, suggesting that these homologous proteins bind to the same sites on the actin molecule. We conclude that zipper protein is a transmembrane protein of the B-G family localized to the intestinal epithelial cell microvillus. The extended cytoplasmic tail either in the intact molecule or after tryptic cleavage may participate in regulating the binding and, thus, activation of BBM1 by actin in a manner similar to tropomyosin.  相似文献   

11.
CD4 is an integral membrane glycoprotein which functions as the human immunodeficiency virus receptor for infection of human host cells. We have recently demonstrated that Vpu, a human immunodeficiency virus type 1-encoded integral membrane phosphoprotein, induces rapid degradation of CD4 in the endoplasmic reticulum. Using an in vitro model system, we demonstrated that Vpu targets specific sequences in the cytoplasmic domain of CD4 to promote its degradation. In this report, we have further delineated regions within CD4 which are required for susceptibility to Vpu. Transfer of the CD4 cytoplasmic region into a heterologous protein, CD8, rendered the chimeric protein sensitive to Vpu-dependent degradation. In contrast, substitution of the CD8 transmembrane domain with the analogous region from CD4 did not confer sensitivity to Vpu. Finally, mutant forms of the CD4 protein containing the extracellular region alone or the extracellular and transmembrane regions linked to a heterologous cytoplasmic domain were not targeted by Vpu. Thus, sequences present in the cytoplasmic domain of CD4 are necessary and sufficient to confer sensitivity to Vpu.  相似文献   

12.
The kinase splitting membranal proteinase (KSMP), was recently shown to be identical with the beta-subunit of meprin. Meprin is a metalloendoproteinase located in brush border membranes and composed of the two types of subunits, alpha and beta. Despite their high sequence homology and similar domain organization, meprin subunits are differently processed during maturation; meprin alpha is retained in the endoplasmic reticulum (ER), and undergoes a proteolytic removal of the transmembrane and cytoplasmic domains, prior to its export from this organelle. In contrast, meprin beta retains these domains even after reaching its final destination in the plasma membrane. Using truncated mutants of rat meprin beta expressed in Cos-7 and human embryonic kidney (HEK) 293 cells, we show here that the cytoplasmic tail is indispensable for its exit from the ER. A meprin beta mutant lacking the last 25 amino acids is shown to be transport-incompetent, although it does not contain any of the known ER retention signals. Systematic analysis of the rate of the ER to Golgi transport using a series of mutants with Ala or Pro substitutions in the tail, suggests that while no specific amino acid residue by itself is imperative for normal intracellular trafficking of meprin beta, the insertion of a bend at a distinct position in the tail (specifically by a Y685P mutation) suffices to retain this protein in the ER. We propose that the very length of the cytoplasmic tail, as well as its secondary structure are essential for the ER to Golgi transport of meprin beta, possibly by allowing an interaction with a cargo receptor.  相似文献   

13.
Mouse hepatitis virus (MHV) receptor, the receptor for the murine coronavirus MHV, was expressed in MHV-resistant hamster and human cells as a series of mutant, recombinant glycoproteins with carboxy-terminal deletions lacking the cytoplasmic tail, transmembrane domain, and various amounts of the immunoglobulin constant-region-like domains. The soluble receptor glycoproteins containing the N-terminal virus-binding domain were released into the supernatant medium and inactivated the infectivity of MHV-A59 virions in a concentration-dependent manner. Surprisingly, some of the anchorless glycoproteins were found on the plasma membranes of transfected cells by flow cytometry, and these cells were rendered susceptible to infection with three strains of MHV. Thus, in the cells in which the anchorless, recombinant receptor glycoprotein is synthesized, some of the protein is bound to an unidentified moiety on the plasma membrane, which allows it to serve as a functional virus receptor.  相似文献   

14.
Human immunodeficiency virus type 1 Vpu is a multifunctional phosphoprotein composed of the N-terminal transmembrane (VpuTM) and C-terminal cytoplasmic domains. Each of these domains regulates a distinct function of the protein; the transmembrane domain is critical in virus release, and phosphorylation of the cytoplasmic domain is necessary for CD4 proteolysis. We carried our experiments to identify amino acids in the VpuTM domain that are important in the process of virus-like particle (VLP) release from HeLa cells. VLPs are released from the plasma membrane of HeLa cells at constitutive levels, and Vpu expression enhanced the release of VLPs by a factor of 10 to 15. Deletion of two to five amino acids from both N- and C-terminal ends or the middle of the VpuTM domain generated mutant Vpu proteins that have lost the ability to enhance VLP release. These deletion mutants have not lost the ability to associate with the wild-type or mutant Vpu proteins and formed complexes with equal efficiency. They were also transported normally to the Golgi complex. Furthermore, a Vpu protein having the CD4 transmembrane and Vpu cytoplasmic domains was completely inactive, and Vpu proteins harboring hybrid Vpu-CD4 TM domains were also defective in the ability to enhance the release of VLPs. When tested for functional complementation in cotransfected cells, two inactive proteins were not able to reconstitute Vpu activity that enhances the release of Gag particles. Coexpression of functional CD4/Vpu hybrids or wild-type Vpu with inactive mutant CD4/Vpu proteins revealed that mutations in the VpuTM domain could dominantly interfere with Vpu activity in Gag release. Taken together, these results demonstrated that the structural integrity of the VpuTM domain is critical for Vpu activity in the release of VLPs from the plasma membrane of mammalian cells.  相似文献   

15.
Transport of yeast alkaline phosphatase (ALP) to the vacuole depends on the clathrin adaptor-like complex AP-3, but does not depend on proteins necessary for transport through pre-vacuolar endosomes. We have identified ALP sequences that direct sorting into the AP-3-dependent pathway using chimeric proteins containing residues from the ALP cytoplasmic domain fused to sequences from a Golgi-localized membrane protein, guanosine diphosphatase (GDPase). The full-length ALP cytoplasmic domain, or ALP amino acids 1-16 separated from the transmembrane domain by a spacer, directed GDPase chimeric proteins from the Golgi complex to the vacuole via the AP-3 pathway. Mutation of residues Leu13 and Val14 within the ALP cytoplasmic domain prevented AP-3-dependent vacuolar transport of both chimeric proteins and full-length ALP. This Leucine-Valine (LV)-based sorting signal targeted chimeric proteins and native ALP to the vacuole in cells lacking clathrin function. These results identify an LV-based sorting signal in the ALP cytoplasmic domain that directs transport into a clathrin-independent, AP-3-dependent pathway to the vacuole. The similarity of the ALP sorting signal to mammalian dileucine sorting motifs, and the evolutionary conservation of AP-3 subunits, suggests that dileucine-like signals constitute a core element for AP-3-dependent transport to lysosomal compartments in all eukaryotic cells.  相似文献   

16.
The G protein-coupled thrombin receptor is activated by an irreversible proteolytic mechanism and, perhaps as a result, exhibits an unusual trafficking pattern in the cell. Naive receptors tonically cycle between the cell surface and a protected intracellular pool, whereas receptors cleaved and activated at the cell surface internalize and move to lysosomes. Toward understanding how these trafficking events are regulated, we examined a series of receptor mutants. A receptor with alanine substitutions at all potential phosphorylation sites in the cytoplasmic tail failed to display agonist-triggered internalization but, like wild type receptor, displayed robust signaling, tonic cycling, and localization to both the cell surface and an intracellular pool. A truncation mutant that lacked most of the cytoplasmic tail also signaled robustly, lacked phosphorylation, and was defective in agonist-triggered internalization. However, in contrast to the specific phosphorylation site mutant, the truncation mutant did not display tonic cycling and localized exclusively to the cell surface. An analysis of a series of truncation mutants localized residues important for receptor trafficking to a 10-amino acid stretch in its cytoplasmic tail. These data suggest that phosphorylation may trigger internalization of activated thrombin receptors but that a second phosphorylation-independent signal mediates tonic internalization of naive receptors. They further suggest that maintenance of the intracellular pool of naive thrombin receptors requires tonic receptor internalization.  相似文献   

17.
The Tol-Pal proteins of Escherichia coli are involved in maintaining outer membrane integrity. They form two complexes in the cell envelope. Transmembrane domains of TolQ, TolR, and TolA interact in the cytoplasmic membrane, while TolB and Pal form a complex near the outer membrane. The N-terminal transmembrane domain of TolA anchors the protein to the cytoplasmic membrane and interacts with TolQ and TolR. Extensive mutagenesis of the N-terminal part of TolA was carried out to characterize the residues involved in such processes. Mutations affecting the function of TolA resulted in a lack or an alteration in TolA-TolQ or TolR-TolA interactions but did not affect the formation of TolQ-TolR complexes. Our results confirmed the importance of residues serine 18 and histidine 22, which are part of an SHLS motif highly conserved in the TolA and the related TonB proteins from different organisms. Genetic suppression experiments were performed to restore the functional activity of some tolA mutants. The suppressor mutations all affected the first transmembrane helix of TolQ. These results confirmed the essential role of the transmembrane domain of TolA in triggering interactions with TolQ and TolR.  相似文献   

18.
Isolated skeletal muscle ryanodine receptors (RyRs) complexed with the modulatory ligands, calmodulin (CaM) or 12-kDa FK506-binding protein (FKBP12), have been characterized by electron cryomicroscopy and three-dimensional reconstruction. RyRs are composed of 4 large subunits (molecular mass 565 kDa) that assemble to form a 4-fold symmetric complex that, architecturally, comprises two major substructures, a large ( approximately 80% of the total mass) cytoplasmic assembly and a smaller transmembrane assembly. Both CaM and FKBP12 bind to the cytoplasmic assembly at sites that are 10 and 12 nm, respectively, from the putative entrance to the transmembrane ion channel. FKBP12 binds along the edge of the square-shaped cytoplasmic assembly near the face that interacts in vivo with the sarcolemma/transverse tubule membrane system, whereas CaM binds within a cleft that faces the junctional face of the sarcoplasmic reticulum membrane at the triad junction. Both ligands interact with a domain that connects directly to a cytoplasmic extension of the transmembrane assembly of the receptor, and thus might cause structural changes in the domain which in turn modulate channel gating.  相似文献   

19.
The bovine papillomavirus E5 protein forms a stable complex with the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in receptor activation and cell transformation. Amino acids in both the putative transmembrane domain and extracytoplasmic carboxyl-terminal domain of the E5 protein appear important for PDGF receptor binding and activation. Previous analysis indicated that the transmembrane domain of the receptor was also required for complex formation and receptor activation. Here we analyzed receptor chimeras and point mutants to identify specific amino acids in the PDGF beta receptor required for productive interaction with the E5 protein. These receptor mutants were analyzed in murine Ba/F3 cells, which do not express endogenous receptor. Our results confirmed the importance of the transmembrane domain of the receptor for complex formation, receptor tyrosine phosphorylation, and mitogenic signaling in response to the E5 protein and established that the threonine residue in this domain is required for these activities. In addition, a positive charge in the extracellular juxtamembrane domain of the receptor was required for E5 interaction and signaling, whereas replacement of the wild-type lysine with either a neutral or acidic amino acid inhibited E5-induced receptor activation and transformation. All of the receptor mutants defective for activation by the E5 protein responded to acute treatment with PDGF and to stable expression of v-Sis, a form of PDGF. The required juxtamembrane lysine and transmembrane threonine are predicted to align precisely on the same face of an alpha helix packed in a left-handed coiled-coil geometry. These results establish that the E5 protein and v-Sis recognize distinct binding sites on the PDGF beta receptor and further clarify the nature of the interaction between the viral transforming protein and its cellular target.  相似文献   

20.
Infusion of the serine and thiol protease inhibitor, leupeptin, is known to cause a reduction of fast axoplasmic transport, and accumulation of lysosomal dense bodies in neuronal perikarya. We have found these dense bodies in hippocampal and cerebellar neurons contain ubiquitin conjugated proteins. We now demonstrate that these accumulated neuronal lysosomes are labeled by antisera to the cytoplasmic, transmembrane and extracellular domains of beta-amyloid precursor protein (APP) and also that lysosomal APP is fragmented. This in vivo model confirms that neurons can process APP via a lysosomal pathway and that neuronal lysosomes in vivo contain both N-terminal and potentially amyloidogenic C-terminal fragments of APP. We also show that increased APP immunoreactivity after leupeptin treatment is seen first in neurons and later in astrocytes. On recovery from infusion, APP N-terminal immunoreactivity diminishes whilst C-terminal reactivity remains in neurons. These findings are consistent with production in whole brain of potentially amyloidogenic fragments of APP within neuronal lysosomes in perikarya and dendrites implying that neurons may play a role in forming the beta-amyloid of plaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号