首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Tholey A  Toll H  Huber CG 《Analytical chemistry》2005,77(14):4618-4625
Efficient chromatographic separation is a prerequisite for the sensitive analysis of complex peptide mixtures using liquid chromatography-mass spectrometry. This is especially true for the analysis of mixtures of unmodified and posttranslationally modified peptides, for example, phosphorylated peptides in the presence of their unmodified analogues. Applying monolithic capillary columns based on poly(styrene/divinylbenzene), the influence of acidic eluents based on trifluoroacetic and heptafluorobutyric acid as well as an alkaline eluent based on triethylamine-acetic acid (pH 9.2) on the separation of synthetic phosphopeptides was evaluated. Heptafluorobutyric acid offered the longest retention times and highest selectivities and, hence, the most effective separation. Application of the alkaline eluent in conjunction with detection in negative ion mode electrospray ionization mass spectrometry, on the other hand, allowed the detection of phosphorylated peptides with significantly lower limits of detection, as compared to acidic eluents in combination with detection in positive ion mode. Pairs of phosphorylated and nonphosphorylated synthetic peptides, ranging from 7- to 16-mers, as well as phosphorylated peptides form a tryptic protein digest could be separated both at acidic and alkaline pH. Utilizing a 60 x 0.20-mm-i.d. capillary column, the limit of detection in negative ion detection mode for a 4-fold phosphorylated peptide in a beta-casein digest was 10 fmol. Together with the capability for fast separation of protein digests, monolithic columns, thus, facilitate the effective and sensitive analysis of this important posttranslational modification.  相似文献   

2.
This work explores the use of 20-microm-i.d. polymeric polystyrene-divinylbenzene monolithic nanocapillary columns for the LC-ESI-MS analysis of tryptic digest peptide mixtures. In contrast to the packing of microparticles, capillary columns were prepared, without the need of high pressure, in fused-silica capillaries, by thermally induced in situ copolymerization of styrene and divinylbenzene. The polymerization conditions and mobile-phase composition were optimized for chromatographic performance leading to efficiencies over 100000 plates/m for peptide separations. High mass sensitivity (approximately 10 amol of peptides) in the MS and MS/MS modes using an ion trap MS was found, a factor of up to 20-fold improvement over 75-microm-i.d. nanocolumns. A wide linear dynamic range (approximately 4 orders of magnitude) was achieved, and good run-to-run and column-to-column reproducibility of isocratic and gradient elution separations were found. As samples, both model proteins and tissue extracts were employed. Gradient nano-LC-MS analysis of a proteolytic digest of a tissue extract, equivalent to a sample size of approximately 1000 cells injected, is presented.  相似文献   

3.
Capillary ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC) was used to separate and purify DNA fragments amplified by the polymerase chain reaction (PCR) prior to their characterization by electrospray ionization mass spectrometry (ESI-MS). The investigation by ESI-MS of single- or double stranded species could be effortlessly selected by chromatography of the nucleic acids under either nondenaturing or denaturing conditions, which were realized by proper adjustment of the column temperature. ESI-MS detection sensitivity was improved by a factor of 10 upon replacement of 25 mM triethylammonium bicarbonate as ion-pair reagent by 25 mM butyldimethylammonium bicarbonate because of the applicability of higher acetonitrile concentrations to elute the DNA from the monolithic, poly(styrene/divinylbenzene)-based capillary columns. For fragments ranging in size from 67 to 84 base pairs, the mass accuracies and mass reproducibilities were typically better than 0.02 and 0.008%, respectively, which enabled the characterization and identification of the PCR products with high confidence. The hyphenated method was applied to the genotyping of polymorphic short tandem repeat (STR) loci from the human tyrosine hydroxylase gene (humTH01). The different alleles both in homo- and heterozygotes were identified on the basis of the masses of the single-stranded amplicons and were in full accordance with the alleles identified by conventional capillary electrophoretic sizing.  相似文献   

4.
Polymer-based strong cation-exchange monolithic capillary columns with different capacities were constructed for ion chromatography by radical polymerization of glycidyl methacrylate (GMA) and ethylene dimethacrylate in a 250-microm-i.d. fused-silica capillary and its subsequent sulfonation based on ring opening of epoxides with 1 M Na(2)SO(3). The cation-exchange capacities can easily and reproducibly be controlled in the range of up to 300 microequiv/mL by changing the immersion time of the epoxy-containing polymer in the Na(2)SO(3) solution. The chromatographic performance of the produced monolithic capillary columns was evaluated through the separation of a model mixture of common cations such as Na(+), NH(4)(+), K(+), Mg(2+), and Ca(2+). As an example, these cations could be well separated from one another on a 15-cm-long cation-exchange monolithic column (column volume, 7.4 microL) with a capacity of 150 microequiv/mL by elution with 10 mM CuSO(4). The pressure drop of this 15-cm column was approximately 1 MPa at a normal linear velocity of 1 mm/s (a flow rate of 3 microL/min), and the numbers of theoretical plates for the cations were above 3000 plates/15 cm. This GMA-based cation-exchange monolithic column could withstand high linear velocities of at least 10 mm/s. Over a period of at least two weeks of continuous use, no significant changes in the selectivity and resolution were observed. The applicability of a flow rate gradient elution and the feasibility of direct injection determination of major cations in human saliva sample were also presented.  相似文献   

5.
Huber CG  Berti GN 《Analytical chemistry》1996,68(17):2959-2965
Temperature-dependent denaturation of DNA restriction fragments from the pBR322 plasmid ranging in length from 46 to 910 base pairs was detected by ion-pair reversed-phase high-performance liquid chromatography using columns packed with alkylated nonporous poly(styrene/divinylbenzene) particles. The presence of acetonitrile in the mobile phase was found to decrease the melting temperatures of DNA fragments by 1.5-2 °C/% of acetonitrile in the eluent. Small fragments (<120 bp) were completely denatured between 53.6 and 63.5 °C, depending on their total GC content. Whereas retention times of completely helical DNA fragments increased gradually with increasing temperature, partial denaturation of larger DNA fragments (>150 bp) was found to reduce retention at temperatures above 53.6 °C. Therefore, micropreparative fractionation and rechromatography, together with DNA restriction analysis, were applied to identify the correct elution order of completely helical and partially denatured fragments. Inspection of the DNA sequences of partially denatured fragments revealed domains with repeating AT base pairs. Positions of partial denaturation within the pBR322 plasmid detected by chromatographic analysis were in good agreement with partial denaturation maps obtained by electron microscopy desrcibed in the literature.  相似文献   

6.
Cross-linked poly(N-isopropylacrylamide-co-acrylic acid) (poly(IPAAm-co-AAc))-grafted silica bead surfaces were prepared and applied as new column matrix materials that exploit temperature-responsive anionic chromatography to separate basic bioactive compounds, specifically catecholamine derivatives, in aqueous mobile phases. Since poly(IPAAm-co-AAc) has a well-known temperature-responsive phase transition and apparent pKa shift, polymer-grafted silica bead surfaces are expected to exhibit simultaneous hydrophilic/hydrophobic and charge density alterations under thermal stimuli. Elution behavior of catecholamine derivatives from a copolymer-modified bead packed column was monitored using aqueous mobile-phase HPLC under varying temperature and pH. Catecholamine derivatives had higher retention times on poly(IPAAm-co-AAc) columns at higher pH in comparison with those on noncharged PIPAAm reference columns, suggesting an electrostatic interaction as a separation mode. Temperature also affected the retention behavior of catecholamine derivatives. Optimal separation of four catecholamine derivatives was achieved at elevated temperature, 50 degrees C, and at pH 7.0. This is due to the increased hydrophobicity of the stationary phase as evidenced by the elution of a nonionic hydrophobic steroid. From these results, mutual influences of both electrostatic and hydrophobic interactions between basic catecholamine derivatives and pH-/temperature-responsive surfaces are noted. Consequently, elution of weakly charged bioactive compounds is readily regulated through the modulation of stationary-phase thermoresponsive hydrophilic/hydrophobic and charge density changes.  相似文献   

7.
Monolithic capillary columns were prepared by copolymerization of styrene and divinylbenzene inside a 200-microm i.d. fused silica capillary using a mixture of tetrahydrofuran and decanol as porogen. With gradients of acetonitrile in 100 mM triethylammonium acetate, the synthesized columns allowed the rapid and highly efficient separation of single-stranded oligodeoxynucleotides and double-stranded DNA fragments by ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC). Compared with capillary columns packed with micropellicular, octadecylated poly-(styrene/divinylbenzene) particles, an improvement in column performance of approximately 40% was obtained, enabling the analysis of an 18-mer oligodeoxynucleotide with a column efficiency of more than 190000 plates per meter. The chromatographic separation system was on-line-coupled to electrospray ionization mass spectrometry (ESI-MS). To improve the mass spectrometric detectabilities, 25 mM triethylammonium bicarbonate was utilized as an ion-pair reagent at the cost of only little reduction in separation performance and acetonitrile was added postcolumn as the sheath liquid through the triaxial electrospray probe. High-quality mass spectra of femtomole amounts of 3-mer to 80-mer oligodeoxynucleotides were recorded showing very little cation adduction. Double-stranded DNA fragments ranging in size from 51 to 587 base pairs were separated and detected by IP-RP-HPLC-ESI-MS. Accurate mass determination by deconvolution of the mass spectra was feasible for DNA fragments up to the 267-mer with a molecular mass of 165 019, whereas the spectra of longer fragments were too complex for deconvolution because of incomplete separation due to overloading of the column. Finally, on-line IP-RP-HPLC tandem MS was applied to the sequencing of short oligodeoxynucleotides.  相似文献   

8.
The recently introduced monolithic silica columns were tested for their use in micellar liquid chromatography. Micellar methods are utilized in high-throughput quantitative structure-retention relationships to estimate an indicator of the membrane permeability of drugs, namely, the octanol-water partition coefficient, log P. The monolithic column's ability to function at higher flow rates might be useful to speed up these chromatographic methods estimating the log P. Therefore, the elution behavior of diverse basic pharmaceutical substances was determined on a classical particle-based and a monolithic column, both with and without a micellar medium in the mobile phase. Utilizing among others principal component analysis, the extent to which these methods differ in retention characteristics was examined in the context of high-throughput determination of log P. Results indicate that combining monolithic columns with micellar media leads to faster log P and possibly even better permeability predictions.  相似文献   

9.
The use of tetrahydrofuran/decanol as porogens for the fabrication of micropellicular poly(styrene/divinylbenzene) monoliths enabled the rapid and highly efficient separation of peptides and proteins by reversed-phase high-performance liquid chromatography (RP-HPLC). In contrast to conventional, granular, porous stationary phases, in which the loading capacity is a function of molecular mass, the loadability of the monoliths both for small peptides and large proteins was within the 0.40.9-pmol range for a 60- x 0.2-mm capillary column. Lower limits of detection obtained by measuring UV-absorbance at 214 nm with a 3-nl capillary detection cell were 500 amol for an octapeptide and 200 amol for ribonuclease A. Upon reduction of the concentration of trifluoroacetic acid in the eluent from the commonly used 0.1-0.2 to 0.05%, the separation system was successfully coupled to electrospray ionization mass spectrometry (ESI-MS) at the cost of only a small decrease in separation efficiency. Detection limits for proteins with ESI-MS were in the lower femtomole range. High-quality mass spectra were extracted from the reconstructed ion chromatograms, from which the masses of both peptides and proteins were deduced at a mass accuracy of 50-150 ppm. The applicability of monolithic column technology in proteomics was demonstrated by the mass fingerprinting of tryptic peptides of bovine catalase and human transferrin and by the analysis of membrane proteins related to the photosystem II antenna complex of higher plants.  相似文献   

10.
Macroporous poly(styrene-divinylbenzene) (PS-DVB) monoliths were prepared by in situ polymerization in PEEK, fused silica, or stainless steel tubing having an inner diameter of 75 or 125 microm. A process is described for subsequent alkylation of the flow-contacting surfaces of the monoliths. The process treats all the surfaces including through-pore surfaces of the rigid macroporous monolith with a solution containing a dissolved Friedel-Crafts catalyst, an alkyl halide (1-chlorooctadecane), and an organic solvent. This process produces an improved reversed-phase liquid chromatographic separation of peptides compared to an unmodified monolithic PS-DVB column. The surface octadecylation is not necessary for a reversed-phase separation of proteins since both unmodified and modified columns provide comparable results. Tryptic protein digests, standard proteins, and standard peptides were used to evaluate the monolithic columns by employing electrospray mass spectrometry detection. Potential applications in proteomics studies by mass spectrometry, which use the alkylated monolithic column engaged onto the nanofabricated electrospray ionization chip, are also discussed.  相似文献   

11.
Monolithic silica capillary columns for HPLC were prepared from tetramethoxysilane to have smaller sized domains and increased phase ratios as compared to previous materials, and their performance was evaluated. The monolithic silica columns possessed an external porosity of 0.65-0.76 and a total porosity of 0.92-0.95 and showed considerably higher performance and greater retention factors in a reversed-phase mode after chemical modification than columns previously reported. An octadecylsilylated monolithic silica column with the smallest domain size (through-pores of approximately 1.3 microm and silica skeletons of approximately 0.9 microm) showed a plate height of less than 5 microm at optimum linear velocities (u) of 2-3 mm/s in 80% acetonitrile for a solute having retention factors of approximately 1, and approximately 7 microm at u = 8 mm/s. With a permeability similar to that of a column packed with 5-microm particles, the monolithic silica columns were able to attain column efficiencies comparable to that of particulate columns packed with 2-2.5-microm particles, and showed performance in the "forbidden region" for the previous columns. The performance of the monolithic column can be compared favorably with that of a particle-packed column when 15,000-30,000 or more theoretical plates are desired at a pressure drop of 20-40 MPa or lower. The increased homogeneity of the co-continuous structures, in addition to the small-sized domains, contributed to the higher performance as compared to previous monolithic silica columns.  相似文献   

12.
Zhao Q  Li XF  Le XC 《Analytical chemistry》2008,80(10):3915-3920
A capillary chromatography technique was developed for the separation and detection of proteins, taking advantage of the specific affinity of aptamers and the porous property of the monolith. A biotinylated DNA aptamer targeting cytochrome c was successfully immobilized on a streptavidin-modified polymer monolithic capillary column. The aptamer, having a G-quartet structure, could bind to both cytochrome c and thrombin, enabling the separation of these proteins from each other and from the unretained proteins. Elution of strongly bound proteins was achieved by increasing the ionic strength of the mobile phase. The following proteins were tested using the aptamer affinity monolithic columns: human immunoglobulin G (IgG), hemoglobin, transferrin, human serum albumin, cytochrome c, and thrombin. Determination of cytochrome c and thrombin spiked into dilute serum samples showed no interference from the serum matrix. The benefit of porous properties of the affinity monolithic column was demonstrated by selective capture and preconcentration of thrombin at low ionic strength and subsequent rapid elution at high ionic strength. The combination of the polymer monolithic column and the aptamer affinities makes the aptamer-modified monolithic columns useful for protein detection and separation.  相似文献   

13.
Cross-linked, thermoresponsive poly(N-isopropylacrylamide-co-acrylic acid-co-N-tert-butylacrylamide) [poly(IPAAm-co-AAc-co-tBAAm)] thin hydrogel layers on silica beads were used as new column matrix modifiers for LC separation of basic bioactive peptides, angiotensin subtypes I, II, and III. Terpolymer poly(IPAAm-co-AAc-co-tBAAm) showed both phase transition and apparent carboxylate pKa shifts in water, depending on temperature. Polymer-grafted silica bead surfaces exhibited simultaneous thermally modulated changes in hydrophilic/hydrophobic properties and charge densities. More effective separation of angiotensin peptide subtypes was achieved on columns of these terpolymer thin hydrogel grafted surfaces, as compared to an uncharged control binary copolymer of IPAAm and tBAAm. Although hydrophobic interactions effect separation of angiotensin subtypes, combined electrostatic and hydrophobic interaction resulted in more pronounced retention. At temperature below the terpolymer phase transition, hydrophobic interactions predominated, and minimal changes in electrostatic interactions were supported by little shift in the apparent AAc carboxylate pKa values. Above the phase transition temperature, electrostatic interactions were dramatically reduced as a result of the decreased charge densities of the polymer grafted surfaces. Therefore, peptide retention times were also reduced, exhibiting a maximum at near 30-35 degrees C. Interestingly, column retention behavior of angiotensins is dramatically modulated by applied step temperature gradients. Thermoresponsive surface property alteration is a very rapid, reversible phenomenon, allowing step temperature gradients on thermoresponsive columns to enable the analogous performance advantages as gradient elution in reversed-phase HPLC. More importantly, injected peptides were recovered completely from the columns from calculation of peak area. In conclusion, these anionic thermoresponsive polymer-modified surfaces are good candidates for improved separation of bioactive peptides under exclusively aqueous conditions.  相似文献   

14.
The effect of chromatographic conditions on the performance of chiral monolithic poly(O-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroqui nidine-co-ethylene dimethacrylate-co-2-hydroxyethyl methacrylate) columns in the capillary electrochromatography of enantiomers has been studied. The flow velocity was found to be proportional to the pore size of the monolith and both the pH and the composition of the mobile phase. The length of both open and monolithic segments of the capillary column was found to exert a substantial effect on the run times. The use of monoliths as short as 8.5 cm and the "short-end" injection technique enabled the separations to be achieved in approximately 5 min despite the high retentitivity of the quinidine selector. Very high column efficiencies of close to 250000 plates/m and good selectivities were achieved for the separations of numerous enantiomers using the chiral monolithic capillaries with the optimized chromatographic conditions.  相似文献   

15.
Hayes JD  Malik A 《Analytical chemistry》2000,72(17):4090-4099
Sol-gel chemistry was used to prepare porous monolithic columns for capillary electrochromatography. The developed sol-gel approach proved invaluable and generates monolithic columns in a simple and rapid manner. Practically any desired column length ranging from a few tens of centimeters to a few meters may be readily obtained. The incorporation of the sol-gel precursor, N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride, into the sol solution proved to be critical as this reagent possesses an octadecyl moiety that allows for chromatographic interactions of analytes with the monolithic stationary phase. Additionally, this reagent served to yield a positively charged surface, thereby providing the relatively strong reversed electroosmotic flow (EOF) in capillary electrochromatography. The enhanced permeability of the monolithic capillaries allowed for the use of such columns without the need for modifications to the commercial CE instrument. There was no need to pressurize both capillary ends during operation or to use high pressures for column rinsing. With the developed procedure, no bubble formation was detected during analysis with the monolithic capillaries when using electric field strengths of up to 300 V cm(-1). The EOF in the monolith columns was found to be dependent on the percentage of organic modifier present in the mobile phase. Separation efficiencies of up to 1.75 x 10(5) plates/m (87,300 plates/column) were achieved on a 50 cm x 50 microm i.d. column using polycyclic aromatic hydrocarbons and aromatic aldehydes and ketones as test solutes.  相似文献   

16.
A previously unknown isoform of the type I major antenna protein of photosystem II of spinach was identified, and its amino-terminal sequence was characterized by a novel kinetic digestion approach, in which sequential tryptic digestion was followed by analysis of both released peptides and truncated proteins by reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry. Using nonpolar, monolithic, 200-microm-i.d. separation columns based on poly(styrene/divinylbenzene) copolymer and applying gradients of acetonitrile in 0.05% aqueous trifluoroacetic acid, released peptides and truncated proteins could be separated and mass analyzed in a single chromatographic run. This enabled a straightforward identification of the fragments removed from the amino-terminal ends of the protein, which was essential for the characterization of the antenna isomers showing the most significant sequence variation in the amino-terminal region. The sequences of the amino termini were derived from the differences in molecular mass between intact and truncated proteins and were corroborated by sequencing using tandem mass spectrometry and database searching. The sequence of the 23 amino-terminal residues of the previously unknown isoform differed from that of the other two known isoforms only in one and three amino acids, respectively. Such subtle changes in amino acid sequence are supposed to play an important role in the supramolecular organization of photosynthetic antenna proteins.  相似文献   

17.
Long monolithic silica-C18 capillary columns of 100 microm i.d. were prepared, and the efficiency was examined using reversed-phase HPLC under a pressure of up to 47 MPa. At linear velocities of 1-2 mm/s, 100,000-500,000 theoretical plates could be generated with a single column (90-440 cm in length) using an acetonitrile-water (80/20) mobile phase with a column dead time (t0) of 5-40 min. It was possible to prepare columns with a minimum plate height of 8.5 +/- 0.5 microm and permeability of (1.45 +/- 0.09) x 10(-13) m(2). The chromatographic performance of a long octadecylsilylated monolithic silica capillary column was demonstrated by the high-efficiency separations of aromatic hydrocarbons, benzene derivatives, and a protein digest. The efficiency for a peptide was maintained for an injection of up to 0.5-2 ng. When three 100 microm i.d. columns were connected to form a 1130-1240 cm column system, 1,000,000 theoretical plates were generated for aromatic hydrocarbons with retention factors of up to 2.4 with a t0 of 150 min. The fact that very high efficiencies were obtained for the retained solutes suggests the practical utility of these long monolithic silica capillary columns.  相似文献   

18.
The immobilization efficiencies of Acidithiobacillus ferrooxidans cells on different immobilization matrices were investigated for biooxidation of ferrous iron (Fe2 +) to ferric iron (Fe3 +). Six different matrices were used such as the polyurethane foam (PUF), granular activated carbon (GAC), raw poly(styrene–divinylbenzene) copolymer (rawSDVB), raw poly(styrene–divinylbenzene) copolymer with granular activated carbon (rawSDVB-GAC), sulfonated poly(styrene–divinylbenzene) copolymer (sulfSDVB) and sulfonated poly(styrene–divinylbenzene) copolymer with granular activated carbon (sulfSDVB-GAC). The sulfSDVB-GAC polymer showed the best performance for Fe2 + biooxidation. It was used at packed-bed bioreactor and the kinetic parameters were obtained. The highest Fe2 + biooxidation rate (R) was found to be 4.02 g/L h at the true dilution rate (Dt) of 2.47 1/h and hydraulic retention time (τ) of 0.4 h. The sulfSDVB-GAC polymer was used for the first time as immobilization material for A. ferrooxidans for Fe2 + biooxidation.  相似文献   

19.
We describe the coupling of capillary-scale monolithic enzyme reactor columns directly to a tandem mass spectrometer for screening of enzyme inhibitors. A two-channel nanoLC system is used to continuously infuse substrate or substrate/inhibitor mixtures through the column, allowing continuous variation of inhibitor concentration by simply altering the ratio of flow from the two pumps. In the absence of inhibitor, infusion of substrate leads to formation of product, and both substrate and product ions can be simultaneously monitored in a quantitative manner by MS/MS. The presence of inhibitor leads to a decrease in product and an increase in substrate concentration in the column eluent. Knowing the product/substrate ratio and the total analyte concentration (P + S), the concentration of product eluting, and hence the relative enzyme activity, can be determined. Both IC50 and KI values can then be obtained by direct MS detection of the effect of inhibitors on relative activity. Inhibitor screening is demonstrated using reusable, sol-gel derived, monolithic capillary columns containing adenosine deaminase, directly interfaced to ESI-MS/MS. On-column enzyme activity was assessed by monitoring inosine and adenosine elution. It is shown that the method can be used for automated screening of the effects of compound mixtures on ADA activity and to determine the KI value of the known inhibitor, erythro-9-(2-hydroxy-3-nonyl)adenine, even when the compound is present within a mixture.  相似文献   

20.
Several novel organic–inorganic hybrid materials, including polystyrene-coated silica (SG-PS), poly(styrene/4-vinylpyridine)-coated silica (SG-PVP), poly(p-nitrostyrene)-coated silica (SG-PS-NO2) and poly(p-aminostyrene)-coated silica (SG-PS-NH2), were synthesized in order to improve the extraction methods of harmful stimulants via solid phase extraction. The materials were characterized using infrared spectra (IR), scanning electron microscope (SEM), Brunauer–Emmett–Teller (BET) surface area measurement and thermogravimetric analysis (TG). The application of the new materials in solid phase extraction columns to extract methamphetamine revealed that the extraction capability of poly(styrene/4-vinylpyridine)-coated silica is the best among the four materials, which provides novel supporter materials for extracting amphetamine-derived drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号