首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural hierarchy of fibrillar ultra-high molecular weight polyethylene (UHMW-PE) fibres is investigated and related to fibre mechanical properties. Chemical etching has been used to change the surface properties of these UHMW-PE fibres through the removal of a skin layer and UHMW-PE oxidation. The physical and chemical changes to the fibre surface introduced by etching affect single-fibre mechanical properties. The effects of etchant and etching time on failure properties and mechanisms is discussed. The decrease in failure strain and strength with etching is associated with the change from an energy-absorbing fibril delamination failure to brittle fracture.  相似文献   

2.
Glass fibres containing metallic aluminium dispersoids up to 7.5 at% AI have been made using ceramic bushings. The metallic granules have diameters ranging from 5 to 40 nm. A new technique based on strength-strain regression analysis has been used to determine the Young's moduli of the glass fibres. The Weibull parameters have been evaluated by both the graphical regression (GRE) and maximum likelihood (MLE) techniques. Fracture studies have also been carried out. The presence of aluminium particles increases the Young's modulus of the fibres but reduces the strength. The latter arises due to the metallic particles acting as stress concentrators within the glass matrix.  相似文献   

3.
4.
《Composites》1995,26(2):83-90
This paper describes the performance of poly(vinyl alcohol) (PVOH) fibres and their composites. PVOH fibres have been studied, with the emphasis on long-term properties. Results indicated that the long-term properties of PVOH fibres are superior to those of high-performance polyethylene (HP-PE) fibres. Mechanical tests on PVOH/epoxy composites showed that, in general, their structural performance is between those of plasma-treated HP-PE and aramid fibre-reinforced composites. Structural mechanical properties of PVOH composites are better than those of HP-PE based composites due to the combination of a strong interfacial bond strength and a less pronounced anisotropic fibre character. However, the strong bonding between PVOH and epoxy results in a rather brittle failure mode of the composite and consequently relatively poor impact properties.  相似文献   

5.
PLA biocomposites with abaca and man-made cellulose fibres were processed by using combined moulding technology: two-step extrusion coating process and consecutively injection moulding. By adding 30 wt% of man-made cellulose, the Charpy impact strength at ambient temperature increased by factor 3.60, compared to unreinforced PLA. Tensile strength rose by factor 1.45 and stiffness by approx. 1.75. Reinforcing with abaca fibres (30 wt%) enhanced both E-Modulus and tensile strength by factor 2.40 and 1.20, respectively. The Charpy A-notch impact resistance of PLA/abaca could be improved by factor 2.4.SEM photographs show fibre pull-outs from the polymer matrix. The fibre orientation was analysed via optical microscopy. The after-process fibre length was significantly affected already during compounding process.  相似文献   

6.
The study examines four types of date palm surface fibres and determines their mechanical and physical properties. In addition, the properties of date palm fibre-reinforced concrete, such as strength, continuity index, toughness and microstructure, are given as a function of curing in water and in a hot-dry climate. The volume fraction and the length of fibres reinforcement were 2–3% and 15–60 mm respectively. Increasing the length and percentage of fibre-reinforcement in both water and hot dry curing, was found to improve the post-crack flexural strength and the toughness coefficients, but decreased the first crack and compressive strengths. In hot-dry climate a decrease of first crack strength with ageing was observed for each concrete type. Water curing decreased the global degree of the voids and cracks with time for each concrete type, but increased it in hot-dry climate.  相似文献   

7.
Mechanical properties of glassy carbon fibres produced from a phenolic resin were determined by static tensile testing. These specimens are of special interest because they consist of an isotropic core surrounded by a sheath of oriented material of varying relative thickness. The chemistry of pyrolysis of the resin is summarized and the changes in mechanical properties of the fibres are discussed in terms of the pyrolysis mechanisms. The results are compared with hardness measurements made on discs produced from the same starting material. Scanning electron microscope studies revealed that the fibres have various types of flaws both in the surface and in the core. The effect of these flaws on the fibre strength is discussed by applying Griffith crack theory.  相似文献   

8.
The tensile strength and Young’s modulus of sisal fibre bundles were determined following alkalisation. The results were then analysed with respect to the diameter and internal structure such as cellulose content, crystallinity index and micro-fibril angle. The tensile strength and stiffness were found to vary with varying concentration of caustic soda, which also had a varying effect on the cell wall morphological structure such as the primary wall and secondary wall. The optimum tensile strength and Young’s modulus were obtained at 0.16% NaOH by weight. The stiffness of the sisal fibre bundles obtained using the cellulose content also referred to as the micro-fibril content was compared with the stiffness determined using the crystallinity index. The stiffness obtained using the crystallinity index was found to be higher than that obtained using the cellulose content however, the difference was insignificant. Alkalisation was found to change the internal structure of sisal fibres that exhibited specific stiffness that was approximately the same as that of steel. These results indicates that the structure of sisal fibre can be chemically modified to attain properties that will make the fibre useful as a replacement for synthetic fibres where high stiffness requirement is not a pre-requisite and that it can be used as a reinforcement for the manufacture of composite materials.  相似文献   

9.
This paper focuses on the experimental investigation carried out on high strength concrete reinforced with hybrid fibres (combination of hooked steel and a non-metallic fibre) up to a volume fraction of 0.5%. The mechanical properties, namely, compressive strength, split tensile strength, flexural strength and flexural toughness were studied for concrete prepared using different hybrid fibre combinations – steel–polypropylene, steel–polyester and steel–glass. The flexural properties were studied using four point bending tests on beam specimens as per Japanese Concrete Institute (JCI) recommendations. Fibre addition was seen to enhance the pre-peak as well as post-peak region of the load–deflection curve, causing an increase in flexural strength and toughness, respectively. Addition of steel fibres generally contributed towards the energy absorbing mechanism (bridging action) whereas, the non-metallic fibres resulted in delaying the formation of micro-cracks. Compared to other hybrid fibre reinforced concretes, the flexural toughness of steel–polypropylene hybrid fibre concretes was comparable to steel fibre concrete. Increased fibre availability in the hybrid fibre systems (due to the lower densities of non-metallic fibres), in addition to the ability of non-metallic fibres to bridge smaller micro cracks, are suggested as the reasons for the enhancement in mechanical properties.  相似文献   

10.
11.
12.
In this study a thorough analysis of physical and fine structure of hemp fibre bundles, namely surface topography, diameter, cellulose content and crystallinity index, have been presented. The fibre bundles have been alkalised and physical and mechanical properties analysed. Alkalisation was found to change the surface topography of fibre bundles and the diameter decreased with increased concentration of caustic soda. Cellulose content increase slightly at lower NaOH concentrations and decrease at higher NaOH concentrations. The crystallinity index decrease with increase in caustic soda concentration up to 0.24% NaOH beyond which, it decreases with increase in NaOH concentration. It was also found that the tensile strength and stiffness increases with increase in the concentration of NaOH up to a limit. Tensile strength and Young’s modulus increase with decrease in cellulose content, while crystalline cellulose decreases slightly but with improved crystalline packing order resulting in increased mechanical properties. Similar observations are elucidated by the crystallinity index. Alkalised hemp fibre bundles were found to exhibit a similar specific stiffness to steel, E-glass and Kevlar 29 fibres. The results also show that crystallinity index obtained following alkalisation has a reverse correlation to the mechanical properties. Stiffer alkalised hemp fibre bundles are suitable candidates as reinforcements to replace synthetic fibres. The improvement in mechanical properties of alkali treated hemp fibre bundles confirms their use as reinforcement materials.  相似文献   

13.
以热压烧结的方法制备了Al2O3/Ni金属陶瓷,探讨了Al2O3/Ni金属陶瓷显微结构、力学性能及微波介电性能随Ni粒子含量变化的规律.结果表明,在垂直于压力方向上,Ni粒子有明显的受压拉伸现象;当Ni粒子含量从5%(体积分数)增加至20%(体积分数)时,金属陶瓷中Ni粒子的分布由孤立向部分桥连方式转变.随Ni粒子含量的增加,金属陶瓷致密度略有下降,抗弯强度明显降低.与纯氧化铝陶瓷相比,含20%(体积分数)Ni粒子Al2O3/Ni金属陶瓷的断裂韧性提高了50%左右,达到6.4MPa·m1/2.复介电常数测试结果表明,在8.2~12.4GHz频率范围内,金属陶瓷复介电常数的实部和损耗随Ni粒子含量的增加逐渐上升.当Ni粒子含量达到20%(体积分数)时,由于Ni粒子之间的部分桥连现象而使介电常数虚部在一定频段出现负值.  相似文献   

14.
15.
We have studied the elastic deformation of freely suspended atomically thin sheets of muscovite mica, a widely used electrical insulator in its bulk form. Using an atomic force microscope, we carried out bending test experiments to determine the Young’s modulus and the initial pre-tension of mica nanosheets with thicknesses ranging from 14 layers down to just one bilayer. We found that their Young’s modulus is high (190 GPa), in agreement with the bulk value, which indicates that the exfoliation procedure employed to fabricate these nanolayers does not introduce a noticeable amount of defects. Additionally, ultrathin mica shows low pre-strain and can withstand reversible deformations up to tens of nanometers without breaking. The low pre-tension and high Young’s modulus and breaking force found in these ultrathin mica layers demonstrates their prospective use as a complement for graphene in applications requiring flexible insulating materials or as reinforcement in nanocomposites.   相似文献   

16.
17.
Silver powder and continuous fibres were used in developing sintered YBa2Cu3O7–x (YBCO)-metal composites because applications require further improvement in mechanical and physical properties of the bulk superconducting elements without affecting the critical current capacity. The weight ratios of silver powder to YBCO and silver fibre to YBCO were varied up to 50% and 5%, respectively, in the beam elements. The effect of silver addition on the density of the composite has been quantified. Stress-strain-critical current properties of bulk YBCO-metal composite elements were investigated in bending at 77 K. The addition of silver powder reduced the sintering temperature, increased the dimensional changes after sintering and also improved the strength, toughness and critical current capacity compared to the monolithic. Silver fibres, (aspect ratios varying between 70 and 110), aligned along the length of the element restricted the changes in dimensions of the composite after sintering and also influenced the stress-strain-current capacity relationship, strength and toughness of the composite to varying degrees. The mixture theory was used to predict the composite flexural strength based on the composition of the composite, constituent properties and porosity.  相似文献   

18.
孙琦  周宏  张航  刘国隆 《复合材料学报》2020,37(5):1056-1062
分别用硅烷偶联剂KH560改性凹凸棒土(Attapulgite,ATP)和氧化石墨烯(Graphene oxide,GO),并将其复合制备ATP-GO复合物。以环氧树脂(Epoxy,EP)为基体,采用原位聚合法制备ATP-GO/EP复合材料。采用SEM和FTIR对ATP-GO复合物的形貌和化学结构进行表征。结果表明:ATP与GO成功键合并附着在GO表面;ATP-GO的加入,提高了EP的冲击强度、弯曲强度和热稳定性,降低了其介电常数和介电损耗。3wt%ATP-0.5wt%GO/EP复合材料的弯曲强度和冲击强度分别为138.58 MPa和20.80 kJ/m2,比纯EP分别提高了75.5%和351.6%,而其介电常数和介电损耗分别低至3.36和0.0118,比纯EP降低了7.7%和27.3%。   相似文献   

19.
The tensile strength of boron fibres, prepared on a tungsten wire substrate suspended in a closed CVD system, has been investigated. The influence of strain-rate, gauge length, and fibre diameter on the tensile fracture stress of the fibres has been evaluated and compared to fracture stress data of fibres produced in continuous CVD processes. Moreover, the E-modulus of the prepared fibres has been measured. Finally the surface defects of the fibres have been examined and classified into fracture stress depressive surface defects and non-fracture stress depressive surface defects.  相似文献   

20.
Studies of the mechanical and optical properties of undrawn polypropylene fibres by annealing and drawing were performed. The optical properties and strain produced in polypropylene fibres at different conditions were measured interferometrically at room temperature. It was found that as the draw ratio of the fibre increased, its birefringence, Δna, increased at a constant rate, and then nearly levelled off. The refractive index, n , and polarizability, p , increased with different draw ratios; but for fibres annealed at 70 and 100°C, there were no acceptable variations. For fibres annealed at 130°C, n and p increased compared to those fibres annealed at 70 and 100°C. An empirical formula has been suggested to explain the relationship between the cross-sectional area of polypropylene fibres with the draw ratio, and the constants of this formula have been determined. The effect of annealing on the refractive index profile of undrawn polypropylene fibres, before and after thermal treatment, was studied. The strain optical coefficient and the Poisson's ratio were calculated over different draw ratios. The results obtained clarify the effect of annealing time and temperature with different draw ratios on the optical behaviour of polypropylene fibres. Microinterferograms are given for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号