首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of ordered mesoporous carbon (OMC) supported Pt (Pt/OMC) catalysts with a controlled Pt size from 2.7 to 6.7 nm at high Pt loading around 60 wt.% have been prepared and their electrocatalytic activities for the electrode reactions relevant to the direct methanol fuel cells have been investigated. The Pt/OMC catalysts with a high dispersion (Pt size around 3 nm) could be prepared by the use of a modified, sequential impregnation–reduction method. The Pt/OMC catalysts containing larger Pt particles were obtained by increasing reduction temperature under hydrogen flow and Pt loading, and by performing impregnation–reduction in a single cycle. The oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) activities of Pt/OMC catalysts as a function of Pt size were investigated at room temperature in 0.1 M HClO4 and (0.1 M HClO4 + 0.5 M methanol), respectively. The specific activity of Pt/OMC for ORR steeply increased up to 3.3 nm and became independent of Pt size from 3.3 to 6.7 nm, and the mass activity curve exhibited maximum activity at 3.3 nm. The MOR activity of Pt/OMC also exhibited the similar trend with the ORR activity, as the maximum of mass activity was also found at 3.3 nm. The results of the present work indicate that the Pt catalysts of ca. 3 nm is an optimum particle size for both ORR and MOR, and this information may be translated into design of high performance membrane electrode assembly.  相似文献   

2.
The preparation of carbon and titanium dioxide supported Pt catalysts through a photochemical and photocatalytic routes were investigated. The catalysts were prepared by irradiation with UV-light (365 nm) at room temperature using H2PtCl6 and C10H14O4Pt (Pt(acac)2) as platinum precursors. The kinetic studies revealed that H2PtCl6 produced metallic platinum faster than Pt(acac)2 and also showed that the amount of platinum deposited on TiO2 was higher than on carbon. The samples were characterized by X-ray diffraction, SEM/EDS and cyclic voltammetry. X-ray diffraction permitted to identify the crystallographic (111) and (200) planes from platinum metal on the catalysts synthesized, the intensity of peaks depends of the amount of platinum deposited. SEM/EDS test confirmed what it was found by the kinetics studies. The electrocatalytic activity was compared with a commercial Pt E-Tek catalyst (10 wt%). The electrochemical results showed that Pt/C-AA catalyst synthesized by liquid phase photo-deposition method has stability in acid media and high distribution of the actives sites on the electrode surfaces. It could be considered as a candidate for electro-catalyst for polymer electrolyte fuel cell. The Pt/TiO2 catalysts did not present electrochemical activity.  相似文献   

3.
This work employs a novel technique in which laponite clay-modified gold electrodes are used as the anode for direct methanol fuel cells. The platinum/laponite clay (Pt/Clay) films on indium tin oxide electrode were characterized by using scanning electron microscope and energy-dispersive X-ray spectroscopy. Various contents of laponite clay (0.1, 0.5, 1.0, and 2.0?wt%) with constant platinum (Pt) catalyst content on modified gold electrodes were studied as an anode catalyst for methanol oxidation. The catalyst poisoning was observed as a function of time. The 1.0?wt% Pt/Clay-modified gold electrode shows the highest activity for methanol oxidation, 27.73?% higher than Pt only modified gold electrode at 2.5?min. The peak current of 1?% Pt/Clay-modified gold electrode is 3.50?% higher than the peak current of Pt only modified gold electrode at 57.5?min. The higher content of Pt/Clay-modified gold electrode shows strong resistance to catalyst poisoning. The Pt/Clay-modified gold electrode is a new and promising electrode for a direct methanol fuel cell and can replace existing commercial catalysts.  相似文献   

4.
This paper presents the effect of graphitic character of ordered mesoporous carbons (OMCs) on the performances of OMC supported catalysts for direct methanol fuel cells (DMFC). Two OMC samples with hexagonal mesostructure were prepared from phenanthrene and sucrose by nano-replication method using mesoporous silica as a template. Structural characterizations revealed that both OMCs exhibited large BET surface area and uniform mesopores, while the OMC synthesized from phenanthrene exhibited lower sheet resistance than the OMC derived from sucrose. The Pt nanoparticles were supported on both OMCs with very high dispersion, as the particle size was estimated under 3 nm despite high metal loading of 60 wt.%. In DMFC single cell test, the OMC supported Pt catalysts exhibited much higher performance than the commercial catalyst, which may be attributed to the high surface area and uniform mesopore networks of OMC. In particular, it was found that the performance of OMC supported catalysts can be significantly enhanced by lowering the resistance of OMC.  相似文献   

5.
A study of a direct methanol alkaline fuel cell (DMAFC) operating with sodium conducting membranes is reported. Evaluation of the fuel cell was performed using membrane electrode assemblies incorporating carbon supported platinum catalysts and Nafion® 117 and 112 membranes. A membrane electrode assembly was also prepared by the direct chemical deposition of platinum into the surface region of the membrane. Evaluation of the chemically deposited assembly showed it to be less active than those based on carbon supported catalysts. SEM &; TEM analysis indicate that this behaviour is due to the low surface area of the chemically deposited catalyst layer. The fuel cell performance with Nafion membranes is reported and is not as good as achieved with hydroxide ion conducting membranes suggesting that Nafion may not be suitable for DMAFC operation.  相似文献   

6.
The aim of this research is to study the effect of different preparation conditions for making carbon supported platinum catalysts by electroless deposition on the properties and performance of proton exchange membrane fuel cells (PEMFC). The studied parameters are platinum and formaldehyde concentrations, deposition time and the method of formaldehyde addition. By a univariate approach, the optimal preparation conditions of 20 wt% Pt/C catalyst are determined as using 10 g Pt l −1, two hours of deposition time and seven equally spaced additions of 0.15 M formaldehyde. SEM and TEM results indicate that the Pt/C catalyst attained has a small particle size (2–4 nm) and a good dispersion. The efficiency of the activation polarization of membrane electrode assembly (MEA) using these prepared catalysts is nearly that of commercial electrodes, but they have a significantly higher ohmic loss.  相似文献   

7.
Abstract

Ordered mesoporous carbon (OMC) supported Pt catalysts were prepared by different loading techniques, in order to be used in the catalysis of oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells. OMC was synthesized by an organic-inorganic self assembly route using Pluronic F127 as surface directing agent, resorcinol-formaldehyde as carbon source and tetraethyl ortosilicate (TEOS) as silica source. Pt loading was achieved by three different approaches; one pot in situ synthesis, wet impregnation and surface-modified wet impregnation. Nitrogen adsorption studies showed slight reductions in surface areas, which can be attributed to partial losses of micropore volumes. The XRD and TEM analysis revealed a better metal distribution and smaller particle size in the surface-modified sample with a mean Pt particle size of 3.83?nm. The modified sample also gave the most promising performance among the catalysts with a maximum power density of 73?mW cm?2, which was very close to the commercial Pt/C catalyst.  相似文献   

8.
A. Ghosh  S. Basu  A. Verma 《Fuel Cells》2013,13(3):355-363
The graphene was synthesized by chemical oxidation followed by thermal exfoliation of natural graphite. The functionalized graphene (FG) was prepared by chemical treatment of the synthesized graphene. The as‐synthesized graphene and FG were characterized and used as Pt support materials. The 20 wt.% Pt/G and 20 wt.% Pt/FG catalysts were prepared by precipitation method. The prepared catalysts were characterized for particle size using X‐ray diffraction, surface morphology, electrochemical performance, and stability using cyclic voltammetry. The electrochemical surface area of the FG supported platinum catalyst was found to be more than 45% as compared to the commercial carbon supported platinum catalyst. The stability of the developed catalyst (Pt/G and Pt/FG) was significantly higher than the commercial Pt/C. The membrane electrode assembly was developed using the catalysts and tested in a PEMFC. The maximum power densities of the fuel cell were found to be 314, 426, and 455 mW cm–2 using Pt/C, Pt/G, and Pt/FG, respectively.  相似文献   

9.
Mesoporous deposits of platinum catalysts were electrodeposited over monolith carbon with hierarchical porous structure. The liquid crystal used as a template allowed the electrodeposition of the catalyst on the outer region of the carbon with low penetration in the porous structure. The platinum hexagonal mesostructured deposits exhibits an excellent stability enhanced by the roughness of the carbon support. The mass activity for the electrooxidation of methanol of the mesoporous Pt catalyst supported on the hierarchical carbon is similar to that observed on gold and to that reported for commercial Pt nanoparticulated catalysts, even when this catalyst has a smaller Pt load than the commercial one. Also, the poisoning rate of the mesoporous catalyst is lower than that observed for the commercial catalyst. The integrated system of structured materials could be suitable for the fabrication of modified electrodes in small scale applications.  相似文献   

10.
乙烷质子交换膜燃料电池的研究   总被引:1,自引:0,他引:1  
研究了以乙烷作为燃料、全氟磺酸高分子膜(Nafion膜)作为质子交换膜、Pt或Pt-Ru作为电极催化剂主要组分、并通过掺杂Nafion膜作为电极内的离子导体构成的燃料电池电化学性能.研究了两种电极催化剂:Pt与Pt-Ru复合催化剂的制备及构成的单电池在不同温度及运行时间下的电化学性能.温度增加,电池性能变好;运行时间增加,电池性能下降,在相同的温度与运行时间下,Pt-Ru复合催化剂构成的电池比Pt催化剂构成的电池极化小.通过分析电极反应产物,探讨了乙烷电极及电池的反应机理.结构为C2H6,( Pt-Ru+膜材料复合阳极)/Nafion膜/(Pt+膜材料复合阴极),O2 的质子交换膜燃料电池,在150℃时,电池的最大输出电流和功率密度分别高达70 mA·cm-2和22 mW·cm-2.  相似文献   

11.
Supported Pt/C catalyst with 3.2 nm platinum crystallites was prepared by the impregnation—reduction method. The various preparation conditions, such as the reaction temperature, the concentration of precursor H2PtCl6 solution and the different reducing agents, and the relationship between the preparation conditions and the catalyst performance were studied. The carbon black support after heat treatment in N2 showed improved platinum dispersion. The particle size and the degree of dispersion of Pt on the carbon black support were observed by transmission electron microscopy (TEM). The crystal phase composition of Pt in the catalyst was determined by X-ray diffraction (XRD). The surface characteristics of the carbon black support and the Pt/C catalyst were studied by X-ray photoelectron spectroscopy (XPS). The electrochemical characteristics of the Pt/C catalysts were evaluated from current—voltage curves of the membrane electrode assembly (MEA) in a proton exchange membrane fuel cell.  相似文献   

12.
Studies are presented of the kinetics and mechanism of oxygen electroreduction on CoPd catalysts synthesized on XC 72 carbon black. As shown both in model conditions and in tests with the cathodes of hydrogen–oxygen fuel cells with proton conducting electrolyte, the CoPd/C system features higher activity as compared to Co/C. It is found by means of structural analysis that CoPd alloy is formed in the course of the catalyst synthesis. This provides the higher catalytic activity of the binary systems. CoPd/C catalyst is also more stable in respect to corrosion than Pd on carbon black. Measurements on a rotating ring–disc electrode show that the CoPd/C system provides preferential oxygen reduction to water in the practically important range of potentials (E > 0.7 V). The similarity of the kinetic parameters of the oxygen reduction reaction on CoPd/C and Pt/C catalysts points to a similar reaction mechanism. The slow step of the reaction is the addition of the first electron to the adsorbed and previously protonated O2 molecule. Studies of the most active catalyst in the fuel cell cathodes are performed. Binary PtCo catalysts (metal atomic ratio of 1 : 1) with low platinum content (7.3 wt.%) modified by phosphorus or sulfur are developed and studied. It is demonstrated that the specific activity of the PtCoS/C (Pt : S = 1 : 1) catalytic system for the O2 reduction reaction exceeds that of a commercial Pt/C catalyst (E-TEK). The tolerance of the catalyst modified with sulfur is at least six times higher than that of Pt/C (E-TEK).  相似文献   

13.
Low loading platinum–cobalt (Pt–Co) cathode catalyst on a Nafion(Na+)-bonded carbon layer is fabricated by using galvanostatic pulse technique to show the advantage of electrodeposition for high utilization of catalyst in proton exchange membrane fuel cell (PEMFC). We observed that Pt–Co catalysts evenly exist on the surface of carbon electrode and its thickness is about 5.8 μm, which is four times thinner than conventional Pt/C. Improved single cell power performance of Pt–Co cathode catalysts with a ratio of 3.2:1 compared with Pt/C is clearly presented.  相似文献   

14.
Recently electrodes for direct methanol fuel cell (DMFC) have been developed for getting high fuel cell performances by controlling composition of catalysts and sulfonated polymers, developing catalyst particles, modifying carbon supports, etc. The electrodes in DMFCs are porous layers, which are composed of catalyst, which is black or carbon supported, and sulfonated polymers in a blended form. In the present study, carbon support for catalysts was functionalized to play dual roles of a mass transport and a catalyst support. The functionalized carbon support was characterized and compared with pristine one by thermal and spectroscopic analysis, and loading of platinum (Pt) catalysts on modified support was performed by gas reduction. The electrodes with Pt on functionalized carbon support were fabricated, though the conventional electrodes were prepared with sulfonated polymer and Pt catalysts. Membrane electrode assembly with Pt catalyst on functionalized support showed a higher DMFC performance of 30 mW cm−2 at 50 °C without using additional sulfonated polymer. Integration of electrode components in one body has another advantage of easier and simpler process in preparing electrodes for DMFCs. Improved DMFC performance of the electrode containing functionalized carbon was be attributed to a better mass transport which maximize the catalytic activities.  相似文献   

15.
Heeyeon Kim  Sang Heup Moon 《Carbon》2011,(4):1491-1501
Fuel-cell electrode catalysts with improved electrochemical properties have been prepared by dispersing Pt nanoparticles onto carbon nanotubes (CNT) using a chemical vapor deposition (CVD) method. (Trimethyl)methylcyclopentadienyl platinum (MeCpPtMe3) has been used as a Pt precursor in the CVD process and the CVD conditions have been optimized to disperse small Pt particles onto the CNT. Pt particles synthesized by CVD have a relatively uniform size of approximately 1 nm, which is substantially smaller than in the case of a commercial Pt/carbon black catalyst (?4.5 nm) prepared by wet impregnation. The dispersion of Pt, estimated by CO chemisorption, is also more than 14% greater than the commercial catalyst with these smaller particles. The electrochemically active surface area (ESA), measured by cyclic voltammetry (CV), and the long-time durability of the surface area of Pt/CNT prepared by CVD are higher than those of the commercial catalyst. Consequently, the single cell performance of the former catalyst is superior to that of the latter one.  相似文献   

16.
The role of catalyst stability on the adverse effects of hydrogen peroxide (H2O2) formation rates in a proton exchange membrane fuel cell (PEMFC) is investigated for Pt, Pt binary (PtX, X = Co, Ru, Rh, V, Ni) and ternary (PtCoX, X = Ir, Rh) catalysts supported on ketjen black (KB) carbon. The selectivity of these catalysts towards H2O2 formation in the oxygen reduction reaction (ORR) was measured on a rotating ring disc electrode. These measured values were used in conjunction with local oxygen and proton concentrations to estimate local H2O2 formation rates in a PEMFC anode and cathode. The effect of H2O2 formation rates on the most active and durable of these catalysts (PtCo and PtIrCo) on Nafion membrane durability was studied using a single-sided membrane electrode assembly (MEA) with a built-in reference electrode. Fluoride ion concentration in the effluent water was used as an indicator of the membrane degradation rate. PtIrCo had the least fluorine emission rate (FER) followed by PtCo/KB and Pt/KB. Though PtCo and PtIrCo show higher selectivity for H2O2 formation than unalloyed Pt, they did not contribute to membrane degradation. This result is explained in terms of catalyst stability as measured in potential cycling tests in liquid electrolyte as well as in a functional PEM fuel cell.  相似文献   

17.
A composite of mesoporous carbon (MC) with poly(3,4‐ethylenedioxythiophene) (PEDOT) is studied as catalyst support for platinum nanoparticles. The durability of commercial Pt/carbon and Pt/MC‐PEDOT as cathode catalyst is investigated by invoking air‐fuel boundary at the anode side so as to foster carbon corrosion at the cathode side of a polymer electrolyte fuel cell (PEFC). Pt/MC‐PEDOT shows higher resistance to carbon corrosion in relation to Pt/C. Electrochemical techniques such as cyclic voltammetry (CV) and impedance measurements are used to evaluate the extent of degradation in the catalyst layer. It is surmised that the resistance of MC‐PEDOT as catalyst support toward electrochemical oxidation makes Pt/MC‐PEDOT a suitable and stable cathode catalyst for PEFCs.  相似文献   

18.
The ordered mesoporous carbons (OMCs) with various primary particle sizes were synthesized and the effect of the particle size of the OMC supports on their performance for the oxygen reduction reaction (ORR) in direct methanol fuel cells was investigated. The ordered mesoporous silica (OMS) templates with particle sizes of 100, 300, and 700 nm (OMS-100, -300, and -700) were synthesized by changing the synthesis pH and Na content in the silica source, sodium silicate. The OMCs with similar particle sizes and morphologies (OMC-100, -300, and -700) were faithfully replicated by using the corresponding OMSs as templates and phenanthrene as a carbon source. Structural characterizations revealed that three OMCs exhibit uniform mesopores of 4–5 nm and BET surface areas of 600–800 m2 g−1. The Pt nanoparticles of ca. 3 nm were supported onto these OMCs and the resulting Pt/OMC catalysts were tested for the ORR. The three OMC supported catalysts exhibited the catalyst utilization efficiencies and ORR activities of similar range, with the values of Pt/OMC-300 catalyst being slightly higher than the other two catalysts.  相似文献   

19.
Highly ordered meso-porous carbon, denoted CMK-3 was synthesized by using mesoporous silicates, SBA-15 as the starting templating materials. The ordered mesoporous carbon was loaded with platinum and platinum-ruthenium nanoparticles using alternative synthesis techniques. The metal loaded ordered mesoporous carbon powders were characterized by transmission electron microscopy (HRTEM), energy dispersive X-ray analysis (EDX), X-ray diffraction, and nitrogen adsorption isotherm experiments. Micrometer-scale and centimeter-scale electrodes containing the mesocarbon/nanometal electrocatalysts were tested for some typical fuel cell reactions. While the nanometal/mesocarbon catalysts have well-defined and uniform properties in the nanometer scale, they have mixed electrocatalytic performance. A synthesized Pt/mesocarbon electrocatalyst outperformed a commercial electrocatalyst for oxygen reduction on a gas-diffusion electrode. The Pt-Ru/mesocarbon electrocatalyst synthesized, however, was not as effective for methanol oxidation.  相似文献   

20.
To decrease the Pt content, a polymer electrolyte membrane fuel cell (PEMFC) was formed using a carbon supported Pd96Pt4 catalyst as the anode material, and a carbon supported Pd49Pt47Co4 catalyst as the cathode material. The as-obtained Pd-based PEMFC with an overall Pd:Pt:Co atomic composition of electrodes (anode + cathode) = 72:26:2 exhibited a performance not too far from that of the fuel cell with the conventional 100% Pt electrodes. With a Pt content of 35 wt% of that of the cell with full Pt electrodes, at a current density of 1 A cm−2 the performance loss of the cell with the Pd-based catalysts was only 11%, with 6% ascribed to the anode catalyst and 5% to the cathode catalyst. The maximum power density of the Pd-based cell was 76% of that of the cell with Pt catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号