首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tin Sulfide thin films were deposited on soda lime glass substrates at three different substrate temperatures using thermal evaporation technique. The impact of substrate temperature on the deposited films has been studied thoroughly. Surface morphology was modified with the substrate temperature. XRD spectra shows orthorhombic end-centered type SnS having (1 1 0) orientation. The crystallite size increases with the increase in the substrate temperature. At a high substrate temperature (450 °C) small grains form on the surface and crystallinity decreases. The effect of substrate temperature on optical and electrical properties has been studied using UV–Vis–NIR Spectrophotometer and Hall effect respectively. With the increase in the substrate temperature there is a substantial decrease in the transmittance and bandgap value. Refractive index (n), dielectric constant (ε1) and extinction co-efficient (k) have also been calculated for different substrate temperatures.  相似文献   

2.
CdTe thin films were prepared using e-beam evaporation technique. The prepared films were irradiated by Ar+ ions at different fluencies using multipurpose aluminum (Al) probe as in-situ. This could also be used in ion bombardment for cleaning the substrate prior to coating. The as grown and Ar+ ion irradiated films were confirmed to be of polycrystalline nature with X-ray technique. Ar+ ion irradiation enhances the growth of (1 1 1) oriented CdTe crystals and the Cd enrichment on the surface of CdTe thin films. Higher Ar+ ion flux helps to grow (2 2 0) oriented CdTe thin film. A considerable change in structural parameters like crystallite size, lattice parameter, internal strain, etc. could be observed as a result of high Ar+ ion flux. The applied in-plan stress in both as grown and irradiated film was identified to be of tensile nature. The applied stress was observed between 0.016 and 0.067 GPa for all Ar+ ion irradiated samples. As a result of the Ar+ ion irradiation, the in-plan stress varies between 1.38×109 and 5.58×109 dyn/cm2. The observed bad gap was increased for higher Ar+ ion flux. It shows the effect of Ar+ ion irradiation on the modifications of optical properties. The observed results were encouraging on the use of simple multipurpose Al probe for Ar+ ion irradiation process as in-situ.  相似文献   

3.
4.
CuIn11S17 compound was synthesized by horizontal Bridgman method using high-purity copper, indium and sulfur elements. CuIn11S17 thin films were prepared by high vacuum evaporation on glass substrates. The glass substrates were heated at 30, 100 and 200 °C. The structural properties of the powder and the films were investigated using X-ray diffraction (XRD). XRD analysis of thin films revealed that the sample deposited at a room temperature was amorphous in nature while those deposited on heated substrates were polycrystalline with a preferred orientation along the (311) plane of the spinel phase. Ultraviolet–visible (UV–vis) spectroscopy was used to study the optical properties of thin films. The results showed that CuIn11S17 thin films have high absorption coefficient α in the visible range (105–106 cm−1). The band gap Eg of the films decrease from 2.30 to 1.98 eV with increasing the substrate temperature (Ts) from 30 to 200 °C. We exploited the models of Swanepoel, Wemple–DiDomenico and Spitzer–Fan for the analysis of the dispersion of the refractive index n and the determination of the optical constants of the films. Hot probe method showed that CuIn11S17 films deposited at Ts=30 °C and Ts=100 °C are p-type conductivity whereas the sample deposited at Ts=200 °C is highly compensated.  相似文献   

5.
Thin film microstructure and its properties can be effectively altered with post deposition heat treatments. In this respect, CdTe thin films were deposited on glass substrates at a substrate temperature of 200 °C using thermal evaporation technique, followed by air annealing at different temperatures from 200 to 500 °C. Structural analysis reveals that CdTe thin films have a cubic zincblend structure with two oxide phases related to CdTe2O5 and CdTeO3 at annealing temperature of 400 and 500 °C respectively. Regardless of the annealing temperature, the plane (111) was found to be the preferred orientation for all films. The crystallite size was observed to increase with annealing temperature. All films were found to display higher lattice parameters than the standard, and hence found to carry a compressive stress. Optical measurements suggest high uniformity of films both before and after post deposition heat treatment. Films annealed at 400 °C displayed superior optical properties due to its high refractive index, optical conductivity, relative density and low disorder. Furthermore, according to the compositional measurements, CdTe thin films were found to exhibit Te rich and Cd rich nature at regions near the substrate and center of the film respectively, for all annealing temperatures. However, composition of the regions near the substrate was found to become more Te rich with increasing annealing temperature. The study suggests that changing the annealing temperature as a post deposition treatment affects structural and optical properties of CdTe thin film as well as its composition. According to the observations, films annealed at 400 °C can be concluded to be the best films for photovoltaic applications due to its superior optical and structural properties.  相似文献   

6.
Cd1−xCoxO thin films (with molar ratios x=0.0–8.0%) were grown onto glass substrates via the sol–gel spin coating technique. XRD results indicate that a CdO single phase with a cubic polycrystalline structure is formed. The crystallinity of CdO thin films is gradually deteriorated with increasing the Co ratio. AFM images of the films confirm the decrease of the grain size of the CdO films with increasing Co content. The direct optical band gap is red shifted from 2.580 eV to 2.378 eV with the increase of Co content. The refractive index, the dispersion parameters, and the optical conductivity of CdO thin films showed an enhancement with increasing cobalt dopant ratio. The correlation between the structural modifications and the resultant optical properties are reported.  相似文献   

7.
We have studied the structural, optical, and electrical properties of thermally evaporated, Cu-doped, ZnTe thin films as a function of Cu concentration and post-deposition annealing temperature. X-ray diffraction measurements showed that the ZnTe films evaporated on room temperature substrates were characterized by an average grain size of 300Å with a (111) preferred orientation. Optical absorption measurements yielded a bandgap of 2.21 eV for undoped ZnTe. A bandgap shrinkage was observed for the Cu-doped films. The dark resistivity of the as-deposited ZnTe decreased by more than three orders of magnitude as the Cu concentration was increased from 4 to 8 at.% and decreased to less than 1 ohm-cm after annealing at 260°C. For films doped with 6–7 at.% Cu, an increase of resistivity was also observed during annealing at 150–200°C. The activation energy of the dark conductivity was measured as a function of Cu concentration and annealing temperature. Hall measurements yielded hole mobility values in the range between 0.1 and 1 cm2/V·s for both as-deposited and annealed films. Solar cells with a CdS/CdTe/ZnTe/metal structure were fabricated using Cudoped ZnTe as a back contact layer on electrodeposited CdTe. Fill factors approaching 0.75 and energy conversion efficiencies as high as 12.1% were obtained.  相似文献   

8.
Thin films of nickel phthalocyanine (NiPc) were prepared by thermal evaporation and the effects of annealing temperature on the structural and optical properties of the samples were studied using different analytical methods. Structural analysis showed that the grain size and crystallinity of NiPc films improved as annealing temperature increased from 25 to 150 °C. Also, maximum grain size (71.3 nm) was obtained at 150 °C annealing temperature. In addition, NiPc films annealed at 150 °C had a very smooth surface with an RMS roughness of 0.41 nm. Optical analysis indicated that band gap energy of films at different annealing temperatures varied in the range of 3.22–3.28 eV. Schottky diode solar cells with a structure of ITO/PEDOT:PSS/NiPc/Al were fabricated. Measurement of the dark current density–voltage (JV) characteristics of diodes showed that the current density of films annealed at 150 °C for a given bias was greater than that of other films. Furthermore, the films revealed the highest rectification ratio (23.1) and lowest barrier height (0.84 eV) demonstrating, respectively, 23% and 11% increase compared with those of the deposited NiPc films. Meanwhile, photoconversion behavior of films annealed at 150 °C under illumination showed the highest short circuit current density (0.070 mA/cm2) and open circuit voltage of (0.55 V).  相似文献   

9.
We perform an extensive micro-Raman analysis of Germanium thin films physically evaporated on several substrates including silicon, silicon oxide and glass. We investigate the dependence of crystal quality on thin film deposition parameters such as substrate temperature and growth rate. We also study the continuous transitional change of the material structure from amorphous to crystalline phases. Ge films obtained by this simple and low cost technique are a viable solution towards the realization of virtual substrates and devices.  相似文献   

10.
Highly oriented crystalline aluminum doped zinc oxide (AZO) films were sputter deposited on glass substrates and a systematic investigation on the as deposited and etched films was reported for its further application in silicon thin film solar cell. Influence of the deposition pressure (from 2 to 8 mTorr) and post-annealing temperature (at 400 °C for 5 min) on the structural, optical and electrical properties of the as-deposited and etched samples were analyzed. The optimum condition for its reproducibility and large area deposition is determined and found that the depositions made at 8 mTorr at 200 W having the distance from source to substrate of 9 cm. All the AZO films exhibited a c-axis preferred orientation perpendicular to the substrate and their crystallinity was improved after annealing. From the XRD pattern the grain size, stress and strain of the films were evaluated and there is no drastic variation. Optical transmittance, resistivity, Hall mobility and carrier concentration for the as deposited and etched-annealed films were found to improve from 79 to 82%; 2.97 to 3.14×10−4 Ω cm; 25 to 38 cm2/V s; 8.39 to 5.96×1020/cm3 respectively. Based on the triangle diagram between figure of merit and Hall mobility, we obtained a balance of point between the electrical and optical properties to select the deposition condition of film for device application.  相似文献   

11.
CdSe and Bi (1%, 2%, 3%) doped CdSe thin films were deposited on the glass substrates using thermal evaporation technique. Effect of Bi doping on the structural, optical, electrical and photo response properties of CdSe thin films were investigated. The X-ray diffraction studies reveals that undoped and Bi doped CdSe films are polycrystalline in nature with hexagonal crystal structure along (002) direction. No significant changes are observed in the lattice parameters or the grain size indicating minimum lattice distortion. The optical band gap of undoped CdSe film was estimated to be 1.67 eV. Replacement of cadmium by bismuth results in an increase in the electrical conductivity of doped films. Doping with bismuth is found to improve the photo sensitivity of CdSe thin films.  相似文献   

12.
The dimeric indium thiolate [(tBu)2In(μ-StBu)]2 has been used as a single-source precursor for the metal–organic chemical vapour deposition (MOCVD) of InS thin films. The dimeric In2S2 core is proposed to account for the formation of the non-equilibrium high-pressure tetragonal phase in the deposited films. Analysis of the deposited films has been obtained by transmission electron microscopy (TEM), with associated energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS).  相似文献   

13.
The effect of annealing temperature (Ta) on the structural, optical, and electrical properties of thermally evaporated Cd20Sn10Se70 thin films has been investigated. Differential Thermal Analysis (DTA) was used to determine the glass transition temperature (Tg) of the prepared alloy. X-ray diffraction studies showed that the as-deposited film and the films that were annealed at Ta<Tg are of low crystallinity. On annealing above Tg, these films showed a polycrystalline nature. The surface morphology and microstructure of as-deposited and annealed films have been examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Their optical constants were calculated from the transmittance measurements in the range 200–2500 nm. The dispersion of refractive index was analyzed in terms of the single-oscillator Wemple-Di Domenico model. Analysis of the optical absorption data indicates that the optical band gap Eg of these films obeys Tauc׳s relation for the allowed direct transition. The optical band gap Eg as well as the activation energy for the electrical conduction ∆E were found to increase with increase of annealing temperature up to Tg, whereas above Tg there is a remarkable decrease in both Eg and ∆E. The obtained results were interpreted in terms of the Mott-Davis model and amorphous–crystalline transformation.  相似文献   

14.
Cadmium stannate (Cd2SnO4) thin films were coated on Corning 1737 glass substrates at 540 °C by spray pyrolysis technique, from the aqueous solution of cadmium acetate and tin (II) chloride precursors. Fluorine doped Cd2SnO4 (F: Cd2SnO4) thin films were prepared by adding ammonium fluoride in the range of 0–5 wt% of the total weight of cadmium acetate and tin (II) chloride in the spray solution. Thickness of the prepared films is about 300 nm. X-ray diffraction analysis of the Cd2SnO4 and 3 wt% F: Cd2SnO4 films shows the signature for the growth along (222) direction. Scanning electron micrographs showed that fluorine doping effectively modifies the surface morphology of Cd2SnO4 films. Average optical transmittance in the visible region (500–850 nm) for Cd2SnO4 is ~79% and it is increased to ~83% for 1 wt% doping concentration of the NH4F in the solution. Fluorescence spectra of F: Cd2SnO4 (1 wt% and 3 wt%) exhibit peak at 601 nm. F: Cd2SnO4 film (1 wt%) shows mobility of ~42 cm2/V s, carrier concentration of ~9.5×1019 cm?3 and resistivity of ~1.5×10?3 Ω cm.  相似文献   

15.
Thin films of cadmium selenide (CdSe) and CdxSe100−x (x=54, 34) have been deposited by vacuum evaporation onto ultraclean glass substrates at room temperature from as-prepared powders. Fabricated samples were characterized using X-ray diffraction (XRD), UV–vis and Fourier transform infrared (FTIR) spectroscopy. XRD indicated the formation of polycrystalline CdxSe100−x thin films polycrystalline in nature with the preferred orientation along the (002) plane. The crystallite sizes of thin films calculated by the Scherer formula were found to be in the range of 29–82 nm. The crystallinity of thin films degraded on increasing the Cd concentration in the Cd–Se system. The band gaps of thin films were obtained from their optical absorption spectra, which were found in the range of 1.69–2.20 eV. The band gap of the Cd34Se66 thin films was found to be very high because of the decrease of their crystallites sizes in comparison to the CdSe and Cd54Se46 thin films. From the FTIR spectra it was revealed that the Cd–Se peaks shifted to lower wavelengths with increase in selenium concentration. The SEM measurements for CdSe, Cd54Se46 and Cd34Se66 thin films reveal that the particle size and the crystalline nature decreased when Se content increased in the system.  相似文献   

16.
ZnS thin films were deposited at different temperatures on glass substrates by chemical bath deposition method without stirring the deposition bath. With deposition temperature increasing from 50 °C to 90 °C, pH decreases rapidly, homogeneous precipitation of ZnS, instead of Zn(OH)2 easily forms in the bath. It means that higher temperature is favorable for the formation of relatively high stoichiometric film, due to the lower concentration of OH. The thickness of the films deposited at 90 °C is much higher than that of the films deposited at 50 °C and 70 °C. Combining the film thickness with the change of pH, the growth of film, especially deposited at 90 °C mainly comes from the fluctuation region of pH. At the same time, with the increase of deposition temperature, the obtained films are transparent, homogeneous, reflecting, compact, and tightly adherent. The ZnS films deposited for 1.5 h, 2 h and 2.5 h at 70 °C and 90 °C have the cubic structure only after single deposition. The average transmission of all films, especially the thicker films deposited at 90 °C, is greater than 90% for wavelength values in the visible region. Comparing with the condition of stirring, the structural and optical properties of films are improved significantly. The direct band gaps range from 3.93 to 4.06 eV.  相似文献   

17.
Highly transparent, low resistive pure and Sb, Zn doped nanostructured SnO2 thin films have been successfully prepared on glass substrates at 400° C by spray pyrolysis method. Structural, electrical and optical properties of pure and Sb, Zn doped SnO2 thin films are studied in detail. Powder X-ray diffraction confirms the phase purity, increase in crystallinity, size of the grains (90–45 nm), polycrystalline nature and tetragonal rutile structure of thin films. The scanning electron microscopy reveals the continuous change in surface morphology of thin films and size of the grains decrease due to Sb, Zn doping in to SnO2. The optical transmission spectra of SnO2 films as a function of wavelength confirm that the optical transmission increases with Sb, Zn doping remarkably. The optical band gap of undoped film is found to be 4.27 eV and decreases with Sb, Zn doping to 4.19 eV, 4.07 eV respectively. The results of electrical measurements indicate that the sheet resistance of the deposited films improves with Sb, Zn doping. The Hall measurements confirm that the films are degenerate n-type semiconductors.  相似文献   

18.
Gallium-doped zinc oxide (GZO) thin films with very high conductivity and transparency were successfully deposited by RF magnetron sputtering at a substrate temperature of 400 °C. The dependence of the film properties over the thickness was investigated. X-ray diffraction (XRD) results revealed the polycrystalline nature of the films with hexagonal wurtzite structure having preferential orientation along [001] direction normal to the substrate. The lowest resistivity obtained from electrical studies was 5.4×10−4 Ω cm. The optical properties were studied using a UV–vis spectrophotometer and the average transmittance in the visible region (400–700 nm) was found to be 92%, relative to the transmittance of a soda–lime glass reference for a GZO film of thickness 495 nm and also the transparency of the films decreases in the near IR region of the spectra. The mobility of the films showed a linear dependence with crystallite size. GZO film of thickness 495 nm with the highest figure of merit indicates that the GZO film is suitable as an ideal transparent conducting oxide (TCO) material for solar cell applications.  相似文献   

19.
The resistivity of evaporated thin films of CdS has been measured as a function of deposition and annealing conditions. Resistivity was found to be thermally activated with a high temperature activation energy of approximately 0-5?eV, which was identified with the height of the inter-crystalline barrier in the Petritz model. Resistivity decreased with increasing film thickness and annealing temperature and increased with increasing deposition rate and substrate temperature during deposition. It is proposed that these variations are related to previously reported changes in the microcrystallite grain size and the degree of preferential orientation in the [002] direction. In addition resistivity is also dependent on compositional changes during the deposition process and mobility variations due to surface scattering. Preliminary results indicate that the films are weakly photoconductive, with lower photosensitivity for the thicker films.  相似文献   

20.
Thin films of intrinsic and Al-doped ZnO were prepared by the sol-gel technique associated with spin coating onto glass substrates. Zinc acetate dehydrate, ethanol and monoethanolamine were used as a starting material, solvent and stabiliser, respectively. Structural, electrical and optical characterizations of the films have been carried out. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The four-points technique was used to characterize thin films electrically. All films exhibit a transmittance above 80-90% along the visible range up to 650 nm and a sharp absorption onset about 375 nm corresponding to the fundamental absorption edge 3.3 eV. Intense UV photoluminescence is observed for undoped and 1% Al-doped ZnO films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号