首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The main goal of the research presented in this paper is to evaluate the possibility of using standard Linux for embedded real-time applications in robotics and manufacturing as a consequence of dramatic improvements in hardware computing power and free software quality in the last few years. After an accurate analysis of the problems related to make Linux, a native Unix-like fair kernel, real-time, laboratory tests showed that a large variety of applications (up to 1 KHz) can be implemented using Linux and commercial-of-the-shelf hardware. Practical examples of the control systems of an unmanned surface vessel used for robotics research and of a marking machine for steelworks are reported and discussed.  相似文献   

2.
Real-time and embedded systems have historically been small scale. However, advances in microelectronics and software now allow embedded systems to be composed of a large set of processing elements, and the trend is towards significant enhanced functionality, complexity, and scalability, since those systems are increasingly being connected by wired and wireless networks to create large-scale distributed real-time embedded systems (DRES). Such embedded computing and information technologies have become at the same time an enabler for future manufacturing enterprises as well as a transformer of organizations and markets. This paper discusses opportunities for using recent advances in the DRES area in the deployment of intelligent, adaptive, and reconfigurable manufacturing plant control architectures.  相似文献   

3.
The design and development of embedded hard real-time (RT) systems is one of the complex development practices, because of the requirements of criticality and timeliness of these systems. One critical aspect of RT systems is the production of output before specified deadline. Formal methods are promising in dealing with the design issues of these applications, although they do not scale well for complex systems. Instead, Modeling and Simulation (M&S) provides a cost-effective approach to verify the design and implementation details of very Complex RT applications. M&S methods provide dynamic and risk-free testing environments to verify different scenarios, and they are used for feasibility analysis and verification of such systems. Nevertheless, the simulation models are usually discarded in the later phases of the development.We present the application of an M&S-based method referred to as DEVSRT (Discrete EVent System Specifications in Real-Time) to solve the discontinuity between the simulation models and the final embedded application, in this paper. DEVSRT defines explicit deadline notation for DEVS transitions, draws a clear mapping between DEVS transitions and real-time tasks and provides a formal method and tool for integration of simulation models with the associated hardware components.  相似文献   

4.
5.
This paper describes a comprehensive prototype of large-scale fault adaptive embedded software developed for the proposed Fermilab BTeV high energy physics experiment. Lightweight self-optimizing agents embedded within Level 1 of the prototype are responsible for proactive and reactive monitoring and mitigation based on specified layers of competence. The agents are self-protecting, detecting cascading failures using a distributed approach. Adaptive, reconfigurable, and mobile objects for reliablility are designed to be self-configuring to adapt automatically to dynamically changing environments. These objects provide a self-healing layer with the ability to discover, diagnose, and react to discontinuities in real-time processing. A generic modeling environment was developed to facilitate design and implementation of hardware resource specifications, application data flow, and failure mitigation strategies. Level 1 of the planned BTeV trigger system alone will consist of 2500 DSPs, so the number of components and intractable fault scenarios involved make it impossible to design an ‘expert system’ that applies traditional centralized mitigative strategies based on rules capturing every possible system state. Instead, a distributed reactive approach is implemented using the tools and methodologies developed by the Real-Time Embedded Systems group.  相似文献   

6.
Worst-case execution-time analysis for embedded real-time systems   总被引:1,自引:0,他引:1  
In this article we give an overview of the worst-case execution time (WCET) analysis research performed by the WCET group of the ASTEC Competence Centre at Uppsala University. Knowing the WCET of a program is necessary when designing and verifying real-time systems. The WCET depends both on the program flow, such as loop iterations and function calls, and on hardware factors, such as caches and pipelines. WCET estimates should be both safe (no underestimation allowed) and tight (as little overestimation as possible). We have defined a modular architecture for a WCET tool, used both to identify the components of the overall WCET analysis problem, and as a starting point for the development of a WCET tool prototype. Within this framework we have proposed solutions to several key problems in WCET analysis, including representation and analysis of the control flow of programs, modeling of the behavior and timing of pipelines and other low-level timing aspects, integration of control flow information and low-level timing to obtain a safe and tight WCET estimate, and validation of our tools and methods. We have focussed on the needs of embedded real-time systems in designing our tools and directing our research. Our long-term goal is to provide WCET analysis as a part of the standard tool chain for embedded development (together with compilers, debuggers, and simulators). This is facilitated by our cooperation with the embedded systems programming-tools vendor IAR Systems.  相似文献   

7.
Many of today’s complex computer applications are being modeled and constructed using the principles inherent to real-time distributed object systems. In response to this demand, the Object Management Group’s (OMG) Real-Time Special Interest Group (RT SIG) has worked to extend the Common Object Request Broker Architecture (CORBA) standard to include real-time specifications. This group’s most recent efforts focus on the requirements of dynamic distributed real-time systems. One open problem in this area is resource access synchronization for tasks employing dynamic priority scheduling. This paper presents two resource synchronization protocols that meet the requirements of dynamic distributed real-time systems as specified by Dynamic Scheduling Real-Time CORBA 2.0 (DSRT CORBA). The proposed protocols can be applied to both Earliest Deadline First (EDF) and Least Laxity First (LLF) dynamic scheduling algorithms, allow distributed nested critical sections, and avoid unnecessary runtime overhead. These protocols are based on (i) distributed resource preclaiming that allocates resources in the message-based distributed system for deadlock prevention, (ii) distributed priority inheritance that bounds local and remote priority inversion, and (iii) distributed preemption ceilings that delimit the priority inversion time further. Chen Zhang is an Assistant Professor of Computer Information Systems at Bryant University. He received his M.S. and Ph.D. in Computer Science from the University of Alabama in 2000 and 2002, a B.S. from Tsinghua University, Beijing, China. Dr. Zhang’s primary research interests fall into the areas of distributed systems and telecommunications. He is a member of ACM, IEEE and DSI. David Cordes is a Professor of Computer Science at the University of Alabama; he has also served as Department Head since 1997. He received his Ph.D. in Computer Science from Louisiana State University in 1988, an M.S. in Computer Science from Purdue University in 1984, and a B.S. in Computer Science from the University of Arkansas in 1982. Dr. Cordes’s primary research interests fall into the areas of software engineering and systems. He is a member of ACM and a Senior Member of IEEE.  相似文献   

8.
In this paper, the challenge of fast stereo matching for embedded systems is tackled. Limited resources, e.g. memory and processing power, and most importantly real-time capability on embedded systems for robotic applications, do not permit the use of most sophisticated stereo matching approaches. The strengths and weaknesses of different matching approaches have been analyzed and a well-suited solution has been found in a Census-based stereo matching algorithm. The novelty of the algorithm used is the explicit adaption and optimization of the well-known Census transform in respect to embedded real-time systems in software. The most important change in comparison with the classic Census transform is the usage of a sparse Census mask which halves the processing time with nearly unchanged matching quality. This is due the fact that large sparse Census masks perform better than small dense masks with the same processing effort. The evidence of this assumption is given by the results of experiments with different mask sizes. Another contribution of this work is the presentation of a complete stereo matching system with its correlation-based core algorithm, the detailed analysis and evaluation of the results, and the optimized high speed realization on different embedded and PC platforms. The algorithm handles difficult areas for stereo matching, such as areas with low texture, very well in comparison to state-of-the-art real-time methods. It can successfully eliminate false positives to provide reliable 3D data. The system is robust, easy to parameterize and offers high flexibility. It also achieves high performance on several, including resource-limited, systems without losing the good quality of stereo matching. A detailed performance analysis of the algorithm is given for optimized reference implementations on various commercial of the shelf (COTS) platforms, e.g. a PC, a DSP and a GPU, reaching a frame rate of up to 75 fps for 640 × 480 images and 50 disparities. The matching quality and processing time is compared to other algorithms on the Middlebury stereo evaluation website reaching a middle quality and top performance rank. Additional evaluation is done by comparing the results with a very fast and well-known sum of absolute differences algorithm using several Middlebury datasets and real-world scenarios.  相似文献   

9.
The dynamic distributed real-time applications run on clusters with varying execution time, so re-allocation of resources is critical to meet the applications’s deadline. In this paper we present two adaptive recourse management techniques for dynamic real-time applications by employing the prediction of responses of real-time tasks that operate in time sharing environment and run-time analysis of scheduling policies. Prediction of response time for resource reallocation is accomplished by historical profiling of applications’ resource usage to estimate resource requirements on the target machine and a probabilistic approach is applied for calculating the queuing delay that a process will experience on distributed hosts. Results show that as compared to statistical and worst-case approaches, our technique uses system resource more efficiently.  相似文献   

10.
Aimed at the deficiencies of resources based time Petri nets (RBTPN) in doing scheduling analysis for distributed real-time embedded systems, the assemblage condition of complex scheduling sequences is presented to easily compute scheduling length and simplify scheduling analysis. Based on this, a new hierarchical RBTPN model is proposed. The model introduces the definition of transition border set, and represents it as an abstract transition. The abstract transition possesses all resources of the set, and has the highest priority of each resource; the execution time of abstract transition is the longest time of all possible scheduling sequences. According to the characteristics and assemblage condition of RBTPN, the refinement conditions of transition border set are given, and the conditions ensure the correction of scheduling analysis. As a result, it is easy for us to understand the scheduling model and perform scheduling analysis.  相似文献   

11.
Supporting UML-based development of embedded systems by formal techniques   总被引:1,自引:0,他引:1  
We describe an approach to support UML-based development of embedded systems by formal techniques. A subset of UML is extended with timing annotations and given a formal semantics. UML models are translated, via XMI, to the input format of formal tools, to allow timed and non-timed model checking and interactive theorem proving. Moreover, the Play-Engine tool is used to execute and analyze requirements by means of live sequence charts. We apply the approach to a part of an industrial case study, the MARS system, and report about the experiences, results and conclusions. This work has been supported by EU-project IST 33522 – OMEGA “Correct Development of Real-Time Embedded Systems in UML”. For more information, see . During this project, the second author was at theWeizmann Institute of Science, the third author at VERIMAG, the fourth author at OFFIS, and the fifth author at NLR.  相似文献   

12.
An ever increasing need for extra functionality in a single embedded system demands for extra Input/Output (I/O) devices, which are usually connected externally and are expensive in terms of energy consumption. To reduce their energy consumption, these devices are equipped with power saving mechanisms. While I/O device scheduling for real-time (RT) systems with such power saving features has been studied in the past, the use of energy resources by these scheduling algorithms may be improved.Technology enhancements in the semiconductor industry have allowed the hardware vendors to reduce the device transition and energy overheads. The decrease in overhead of sleep transitions has opened new opportunities to further reduce the device energy consumption. In this research effort, we propose an intra-task device scheduling algorithm for real-time systems that wakes up a device on demand and reduces its active time while ensuring system schedulability. This intra-task device scheduling algorithm is extended for devices with multiple sleep states to further minimise the overall device energy consumption of the system. The proposed algorithms have less complexity when compared to the conservative inter-task device scheduling algorithms. The system model used relaxes some of the assumptions commonly made in the state-of-the-art that restrict their practical relevance. Apart from the aforementioned advantages, the proposed algorithms are shown to demonstrate the substantial energy savings.  相似文献   

13.
Embedded systems are usually resource limited in terms of processing power, memory, and power consumption, thus embedded TCP/IP should be designed to make the best use of limited resources. Applying zero-copy mechanism can reduce memory usage and CPU processing time for data transmission. Power consumption can be reduced as well. In this paper, we present the design and implementation of zero-copy mechanism in the target embedded TCP/IP component, LyraNET, which is derived from Linux TCP/IP codes and remodeled as a reusable software component that is independent from operating systems and hardware. Performance evaluation shows that TCP/IP protocol processing overhead can be significantly decreased by 23–63%. Besides, object code size of this network component is only 77.64% of the size of the original Linux TCP/IP stack. The experience of this study can serve as the reference for embedding Linux TCP/IP stack into a target system that requires network connectivity and improving the transmission efficiency of Linux TCP/IP by zero-copy implementation. This paper is an extended version of the paper “LyraNET: A Zero-Copy TCP/IP Protocol Stack for Embedded Operating Systems” that appeared in the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications. Mei-Ling Chiang received the B.S. degree in Management Information Science from National Chengchi University, Taipei, Taiwan, in 1989. She received the M.S. degree in 1993 and her Ph.D degree in 1999 in Computer and Information Science from National Chiao Tung University, Hsinchu, Taiwan. Now she is an Assistant Professor in the Department of Information Management at National Chi-Nan University, Puli, Taiwan. Her current research interests include operating systems, embedded systems, and clustered systems. Yun-Chen Lee received the B.S degree in 2002 and the M.S. degree in 2005 in Information Management from National Chi-Nan University, Puli, Taiwan. He is currently a software engineer in InterVideo Digital Tech., responsible for software development of multimedia-related products.  相似文献   

14.
We present the first Utility Accrual (or UA) real-time scheduling algorithm for multiprocessors, called the global Multiprocessor Utility Accrual scheduling algorithm (or gMUA). The algorithm considers an application model where real-time activities are subject to time/utility function time constraints, variable execution time demands, and resource overloads where the total activity utilization demand exceeds the total capacity of all processors. We consider the scheduling objective of (1) probabilistically satisfying lower bounds on each activity’s maximum utility, and (2) maximizing the system-wide, total accrued utility. We establish several properties of gMUA including optimal total utility (for a special case), conditions under which individual activity utility lower bounds are satisfied, a lower bound on system-wide total accrued utility, and bounded sensitivity for assurances to variations in execution time demand estimates. Finally, our simulation experiments validate our analytical results and confirm the algorithm’s effectiveness.  相似文献   

15.
Resource reclaiming schemes are typically applied in reservation-based real-time uniprocessor systems to support efficient reclaiming and sharing of computational resources left unused by early completing tasks, improving the response times of aperiodic and soft tasks in the presence of overruns. In this paper, we introduce a novel and efficient reclaiming algorithm, named M-CASH, for multiprocessor platforms. M-CASH leverages the resource reservation approach offered by the Multiprocessor CBS server offering significant improvements. The correctness of the algorithm is formally proven and its performance is evaluated through extensive synthetic simulations.
Marco CaccamoEmail:
  相似文献   

16.
针对已有模型不能实现更多范围内获取所需要的资源,提出了一个改进的通用抽象体系结构模型,通过接口向网格资源管理系统发布、获取自己所需要的资源,实现用户在更大范围内获取所需要的资源.创建了该模型的原型系结构模型,通过接口向网格资源管理系统发布、获取自己所需要的资源,实现用户在更大范围内获取所需要的资源.创建了该模型的原型系统的网格,并在该网格上进行了一些算法研究.实验结果证实了该实践中的可行性和优越性.  相似文献   

17.
Static priority scheduling of event-triggered real-time embedded systems   总被引:1,自引:0,他引:1  
Real-time embedded systems are often specified as a collection of independent tasks, each generating a sequence of event-triggered code blocks. The goal of scheduling tasks in this domain is to find an execution order which satisfies all real-time constraints. Within the context of recurring real-time tasks, all previous work either allowed preemptions, or only considered dynamic scheduling, and generally had exponential complexity. However, for many embedded systems running on limited resources, preemptive scheduling may be very costly due to high context switching and memory overheads, and dynamic scheduling can be less desirable due to high CPU overhead. In this paper, we study static priority scheduling of recurring real-time tasks. We focus on and obtain schedule-theoretic results for the non-preemptive uniprocessor case. To achieve this, we derive a sufficient (albeit not necessary) condition for schedulability under static priority scheduling and show that this condition can be efficiently tested in practice. The latter technique is demonstrated with examples, where in each case, an optimal solution for a given problem specification is obtained within reasonable time, by first detecting good candidates using meta-heuristics, and then by testing them for schedulability.
Selin Cerav-ErbasEmail:
  相似文献   

18.
Real-time systems need time-predictable platforms to allow static analysis of the worst-case execution time (WCET). Standard multi-core processors are optimized for the average case and are hardly analyzable. Within the T-CREST project we propose novel solutions for time-predictable multi-core architectures that are optimized for the WCET instead of the average-case execution time. The resulting time-predictable resources (processors, interconnect, memory arbiter, and memory controller) and tools (compiler, WCET analysis) are designed to ease WCET analysis and to optimize WCET performance. Compared to other processors the WCET performance is outstanding.The T-CREST platform is evaluated with two industrial use cases. An application from the avionic domain demonstrates that tasks executing on different cores do not interfere with respect to their WCET. A signal processing application from the railway domain shows that the WCET can be reduced for computation-intensive tasks when distributing the tasks on several cores and using the network-on-chip for communication. With three cores the WCET is improved by a factor of 1.8 and with 15 cores by a factor of 5.7.The T-CREST project is the result of a collaborative research and development project executed by eight partners from academia and industry. The European Commission funded T-CREST.  相似文献   

19.
20.
We propose a novel model- and component-based technique to support communications-oriented development of software for vehicular distributed real-time embedded systems. The proposed technique supports modeling of legacy nodes and communication protocols by encapsulating and abstracting the internal implementation details and protocols. It also allows modeling and performing timing analysis of the applications that contain network traffic originating from outside of the system such as vehicle-to-vehicle, vehicle-to-infrastructure, and cloud-based applications. Furthermore, we present a method to extract end-to-end timing models to support end-to-end timing analysis. We also discuss and solve the issues involved during the extraction of these models. As a proof of concept, we implement our technique in the Rubus Component Model which is used for the development of software for vehicular embedded systems by several international companies. We also conduct an application-case study to validate our approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号