首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《功能材料》2012,43(15)
金属陶瓷金属相优先腐蚀是目前惰性阳极工业化难点之一,在金属相表面包覆NiFe2O4尖晶石来提高其耐高温熔盐腐蚀性能。包覆实验结果显示,包覆后的颗粒尺寸为2-5μm,且有团聚现象,金属相20Ni-80Cu表面除形成NiFe2O4尖晶石外,可能还含有NiFe2O4-x、Cu2O、NiO、CuxNi1-x、NiyFe1-yFe2O4-a和NizFe1-zO。腐蚀实验表明,金属表面包覆10%、20%、30%、40%和50%NiFe2O4尖晶石后制备的金属陶瓷惰性阳极样品其金属腐蚀层厚度都在20~50μm,其年腐蚀率分别为1.89、1.73、1.65、1.58和2.03cm/a,未包覆金属陶瓷惰性阳极金属腐蚀层厚度为200μm和年腐蚀率为4.15cm/a,说明金属表面包覆NiFe2O4尖晶石能提高惰性阳极的抗熔盐腐蚀性能。  相似文献   

2.
铝电解用NiFe2O4基金属陶瓷的制备   总被引:22,自引:0,他引:22  
以铝电解惰性阳极为应用目标,制备了不同金属相(Cu—Ni)含量的Ni-Cu/NiFe2O4金属陶瓷,研究了烧结气氛、温度和保温时间对其性能的影响,解决了烧结过程中氧化物陶瓷的离解和金属相被氧化的问题,比较了不同烧结条件下所得试样的基本物理参数,找到了较优的Ni—Cu/NiFe2O4金属陶瓷制备工艺。结果表明:Cu/NiFe2O4金属陶瓷的金属相中添加15wt% Ni后,可以提高金属相的液相线温度,改善金属相对NiFe2O4陶瓷相的润湿性能,从而可在保证金属相不溢出且分布均匀的前提下,大大提高金属陶瓷的烧结温度和保温时间,显著提高金属陶瓷的致密度,进而改善金属陶瓷惰性阳极的耐腐蚀性能和导电性能。  相似文献   

3.
Ag-NiFe2O4金属陶瓷性能研究   总被引:1,自引:0,他引:1  
为改善铝电解惰性阳极用NiFe2O4尖晶石材料存在的不足,制备了不同金属Ag含量的Ag-NiFe2O4金属陶瓷,利用扫描电子显微镜观察显微组织,由X射线衍射分析化学成分,研究了Ag-NiFe2O4试样的体积密度、热震性、导电率以及腐蚀速率,并与纯NiFe2O4尖晶石对比,分析了其性能差异的原因.试验结果表明,金属的Ag加入显著改善了抗热震性,含10%Ag试样的导电能力比纯NiFe2O4尖晶石提高了30%,综合考虑Ag含量为15%试样性能最好.  相似文献   

4.
添加剂对Ag/NiFe2O4金属陶瓷惰性阳极性能的影响   总被引:2,自引:0,他引:2  
席锦会  姚广春  刘宜汉  张晓明 《功能材料》2006,37(2):216-218,221
为了提高镍铁尖晶石基金属陶瓷惰性阳极的性能,以NiO、Fe2O3、Ag粉和微量V2O5为原料,采用粉末冶金法制备了含有过量15%NiO,掺杂V2O5的镍铁尖晶石金属陶瓷惰性阳极.原料经混合,在成型后,于1200℃烧结6h.研究了添加剂V2O5对NiFe2O4尖晶石试样的密度、微观形貌、腐蚀率的影响.结果表明:只有添加剂V2O5的添加量>1.0%时才对提高惰性阳极试样密度有贡献,但贡献很小,而且晶粒明显粗大化.但添加V2O5使晶粒发育完全,呈规则的八面体形状.另外在烧结中V2O5与NiO、Fe2O3反应生成的Ni2FeVO6能够改善试样在冰晶石融盐中的抗腐蚀性能.腐蚀8h后,添加1.5%V2O5的试样基本完好,腐蚀率降为无添加剂试样的1/4.  相似文献   

5.
为得到制备Ag/NiFe2O4金属陶瓷惰性阳极的最佳工艺条件,利用正交试验法确定合适的工艺条件.考虑了主要影响阳极制品性能的五个因素,每个因素又设计四个水平,通过正交分析研究了各因素对制品密度、导电性、抗腐蚀性的影响.实验结果表明:Ag含量越多,导电性越好,但腐蚀率提高;提高烧结温度或延长烧结时间,有利于提高制品的密度,但导致Ag的溢出,抗腐蚀能力下降;压制压力越大,制品的致密度、抗腐蚀能力提高;粒度组成中大颗粒尺寸不能太大,否则腐蚀率增大、电导率下降.最佳工艺条件为:压制压力160 MPa;烧结温度1350℃;保温时间6 h;原料中主颗粒直径为0.50~0.355 mm;Ag含量为10%.  相似文献   

6.
张雷  周科朝 《材料导报》2005,19(6):48-51
介绍了国内外铝电解用NiFe2O4型惰性阳极材料的研究与开发进展情况.该材料在具有耐熔盐腐蚀、抗氧化、电阻率低等优点的同时也存在有抗热震性能差和电连接困难等缺陷.此外,简要阐述了NiFe2O4型惰性阳极的主要制备工艺.  相似文献   

7.
王晶  杨巧珍  董平  张俊玲 《材料导报》2011,25(16):44-47
以乙醇-水为混合溶剂,六亚甲基四胺(HMTA)与聚乙烯吡咯烷酮(PVP)为添加剂,通过溶剂热法合成海绵状的镍铁氧体(NiFe2O4)团簇,并对其进行了XRD、VSM、SEM、TEM、BET与ICP表征。结果表明,在反应体系中同时引入PVP与HMTA时,合成的海绵状NiFe2O4团簇具有尖晶石晶体结构,晶粒均匀细小,比饱和磁化强度为57.30emu/g,比表面积与孔容分别为91.57m2/g、0.26cm3/g。  相似文献   

8.
何汉兵  刘锋  宋云峰  肖汉宁 《功能材料》2012,43(10):1239-1243
在高温熔盐电解质78.07%Na3AlF6-9.5%AlF3-5.0%CaF2-7.43%Al2O3中对NiFe2O4-10NiO基陶瓷进行了电解腐蚀性能研究,结果发现烧结后的陶瓷NiFe2O4相中的Fe/Ni比为2.211~2.89,且NiO相的Fe/Ni比为0.136~0.34,而电解腐蚀后NiFe2O4相中的Fe/Ni比为2.07~2.335,且NiO相中Fe/Ni比为0.120~0.195,说明在电解腐蚀过程中Fe元素发生了优先腐蚀。铁元素在电解过程中发生优先腐蚀的原因可能是化学腐蚀和电化学腐蚀共同作用的结果。  相似文献   

9.
常、热压烧结NiFe2O4/Ag金属陶瓷性能比较   总被引:1,自引:0,他引:1  
为改善铝电解惰性阳极用 NiFe2O4 尖晶石材料存在的不足,采用热压烧结的方法制备了不同金属Ag含量的 Ag NiFe2O4 金属陶瓷。利用扫描电子显微镜观察其显微结构,由 X射线衍射分析材料的成分,并对常、热压烧结试样的体积密度及力学性能进行了系统的比较,分析了其性能差异的原因。研究结果表明热压烧结使试样的相对密度提高 12%,抗弯强度可以提高63MPa, 腐蚀速率降低近 30%,而晶粒尺寸小、致密度高是热压烧结试样性能优越的主要原因。  相似文献   

10.
以NiFe2O4纳米粒子作磁性载体、苯乙烯(ST)、正硅酸乙酯(TEOS)为原料,KH-570为交联剂,采用乳液聚合法制备了聚苯乙烯-SiO2/NiFe2O4磁性微球材料。通过VSM、FT-IR、SEM、TG-DTA、溶剂抽提等方法对磁性微球材料进行了测试。制备的NiFe2O4粒子为面心立方结构,NiFe2O4纳米颗粒及聚苯乙烯-SiO2/NiFe2O4磁性微球具有超顺磁性。聚苯乙烯-SiO2/NiFe2O4磁性微球以SiO2/NiFe2O4为核、PS为壳,通过KH-570接枝到SiO2/NiFe2O4上,核壳间以共价键相接的包覆型纳米粒子,平均直径为100nm左右,具有良好的热稳定性和耐溶剂性能。热重(TG)分析表明,磁性聚苯乙烯微球磁性物质质量分数为28.8%。  相似文献   

11.
罗伟红  宋宁  谢刚  姚云 《材料导报》2013,27(6):68-70,98
研究了球磨时间对所制备NiFe2O4-10NiO基镍铁尖晶石的微观形貌、体积密度、气孔率、抗热震性、抗腐蚀性的影响。研究结果表明球磨时间对惰性阳极的性能影响很大。当球磨时间为6h时,试样的体积密度最大,气孔率最小,抗腐蚀性最强,提高了球磨效率,但由于体积密度大,增大了试样的脆性,其抗热震性较差。综合试样各方面的性能,确定最佳球磨时间为6h。  相似文献   

12.
添加TiO2对镍铁尖晶石惰性阳极材料性能的影响   总被引:1,自引:0,他引:1  
为了提高惰性阳极材料的性能,本文尝试在合成镍铁尖晶石过程中掺杂一定量TiO2.采用高温固相反应法在1200℃下烧结6h,制备掺杂TiO2的镍铁尖晶石惰性阳极材料.研究了掺杂TiO2对试样密度、电导率和腐蚀率的影响.研究结果表明,掺杂TiO2后NiFe2O4的晶格产生畸变,从而TiO2促进烧结,提高材料的密度.并且由于Ti4 离子取代Fe3 离子,产生导电电子,改善了NiFe2O4惰性阳极材料的导电性.添加0.5%TiO2可降低材料的腐蚀率,但随着添加量的增加腐蚀率也增加,说明TiO2对材料的抗腐蚀性不利.经研究发现腐蚀率降低的原因是腐蚀过程中NiFe2O4分解产生的Fe2O3与电解质中Al2O3反应生成了FeAl2O4.综合考虑TiO2对材料各性能的影响,最终确定掺杂量为0.5%.  相似文献   

13.
采用传统粉末冶金技术制备了铝电解用5Cu/(NiFe2O4-10NiO)金属陶瓷惰性阳极,并对其在20和40℃过热度下Na3AlF6-AlF3-Al2O3电解质中的电解腐蚀进行了研究。研究结果表明,过热度的升高对电解后阳极的外观形貌无明显的影响。不同过热度下阳极边部均存在腐蚀现象,但阳极内部相对保持完好。低温电解槽电压比传统电解温度槽电压波动大。过热度升高槽电压波动幅度降低。20和40℃过热度下,Fe、Ni和Cu腐蚀组元在电解质中的平衡浓度分别为140×10-6、35×10-6、44×10-6和142×10-6、36×10-6、34×10-6。过热度的升高对阳极腐蚀组元在电解质中的平衡浓度无明显影响。电解温度的降低减小了阳极腐蚀组元在电解质中的平衡浓度。  相似文献   

14.
NiFe2O4/Ag复合材料的制备及其耐蚀和导电性能   总被引:1,自引:0,他引:1  
张磊  焦万丽  姚广春 《功能材料》2006,37(1):123-126
以Fe2O3、NiO和Ag2O为主要原料,采用固相烧结工艺制备了NiFe2O4/Ag复合材料,用X射线衍射和扫描电子显微镜对材料的组成和微观结构进行了研究,并测量了样品在冰晶石熔盐中的静态热腐蚀速率及其高温电导率.结果表明,复合材料由NiO、NiFe2O4尖晶石和Ag三相组成.随着Ag2O含量的增多,复合材料的致密化程度先增加而后降低,当Ag2O含量为6%时,试样的致密化程度最高.Ag2O的加入在不提高试样在冰晶石熔盐中的静态热腐蚀速率的前提下,提高了试样的高温电导率.  相似文献   

15.
纳米NiFe2O4的制备及其对高氯酸铵的热分解催化性能   总被引:1,自引:0,他引:1  
采用水热法制备出纯相的NiFe2O4纳米颗粒。利用X射线衍射仪(XRD),透射电镜(TEM)和傅里叶变换红外光谱仪(FT-IR)对样品进行了表征,并运用热分析法和质谱仪研究了样品对高氯酸铵的热分解催化性能。结果表明,制备的NiFe2O4纳米颗粒粒径约为5.0nm,对高氯酸铵的热分解具有很高的催化活性。当NiFe2O4纳米颗粒的添加量达到10%时,对高氯酸铵的热分解催化性能最好,可使高氯酸铵的高温分解温度降低89.8℃。  相似文献   

16.
制备了不同金属Ag含量的Ag-NiFe2O4金属陶瓷,利用扫描电子显微镜观察显微组织,由X射线衍射分析化学成分,研究了Ag的添加量对其体积密度、气孔率、热震性、导电率以及腐蚀速率的影响,试验结果表明,抗热震性和导电能力随着Ag含量的增加而增强,导电率的提高和腐蚀率的增大仍是一对突出的矛盾.单一通过添加金属Ag不可能使导电率和腐蚀率都满足要求.  相似文献   

17.
Ag含量对NiFe2O4基金属陶瓷惰性阳极性能的影响   总被引:1,自引:0,他引:1  
为了提高NiFe2O4陶瓷阳极材料的力学性能和抗热震性,向原料中加入金属Ag,采用粉末冶金法制备了Ag/NiFe2O4金属陶瓷惰性阳极.研究了Ag含量对材料微观结构、抗弯强度以及抗热震性的影响.研究结果表明随着Ag含量的增加,惰性阳极材料的晶粒尺寸逐渐减小,说明Ag能够有效抑制陶瓷基体晶粒的长大.而且随着Ag含量的增加,材料的结构越来越致密,说明Ag在一定程度上能够促进烧结.对材料的力学性能和抗热震性测试结果发现,Ag能提高材料的强度,随着Ag含量的增加,材料的抗弯强度逐渐增大,抗热震性在银含量为10%处达到最大值.  相似文献   

18.
采用柠檬酸法制备了尖晶石型纳米晶CuAl2O4,将其添加到P25(degussa,TiO2)中,制备成CuAl2O4/TiO2薄膜光阳极,并组装成染料敏化太阳电池(DSSC),对其光电性能进行表征。结果表明:CuAl2O4的加入,电池性能得到提高;当CuAl2O4含量为2%(质量分数)时,与纯TiO2薄膜光阳极相比,光电转化效率提高了39.1%。  相似文献   

19.
SiC晶须增强NiFe2O4基惰性阳极材料烧结工艺研究   总被引:2,自引:0,他引:2  
张淑婷  姚广春  刘宜汉 《功能材料》2005,36(4):569-571,574
为改善铝电解惰性阳极用NiFe2O4 尖晶石材料存在的不足,首次采用固态合成法制备了NiFe2O4/SiCw 复合材料。利用扫描电子显微镜观察显微组织,由X射线衍射分析物相,研究了烧结温度和保温时间对体积密度、气孔率和微观结构的影响,通过DTA分析证明了低于1200℃时NiFe2O4 与SiC的热力学相容性,试验结果表明,当烧结温度为1180℃时试样微观结构最为均匀致密,当烧结时间>6h时密度和气孔率的变化趋于稳定, NiFe2O4/SiCw 复合材料最佳的烧结工艺为1180℃×6h。  相似文献   

20.
MnO2对镍铁尖晶石惰性阳极材料性能的影响   总被引:13,自引:2,他引:11  
尝试在合成镍铁尖晶石过程中添加一定量MnO2 以提高试样的性能。采用高温固相反应法制备掺杂MnO2 的镍铁尖晶石惰性阳极材料,研究了掺杂MnO2 对制品密度,收缩率和抗腐蚀性的影响。研究结果表明MnO2 能够促进烧结,提高制品的密度,并能够改善制品的抗腐蚀能力,添加 1% MnO2 后试样的腐蚀率为纯尖晶石试样的1/7。试样经 X射线衍射分析发现,添加 MnO2 后无新相出现,MnO2 与 NiFe2O4形成固熔体,Mn4 离子取代了部分 Fe3 离子,材料仍是镍铁尖晶石结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号