首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
研究了失效锂离子电池焙烧物料中有价金属的浸出行为.首先以LiCoO2,Co3O4为实验原料,与Na2SO4,K2SO4,(NH4)2SO4和浓硫酸调成浆料,在不同温度下焙烧转化,然后用热水浸出.在不同条件下,LiCoO2焙烧转化物料在水中的溶解率为56.4%~100%,Co3O4焙烧转化物料的溶解率达97.2%~100...  相似文献   

2.
《应用化工》2022,(6):1366-1369
采用SO_2还原浸出工艺回收废旧锂离子电池正极材料中的有价金属。结果表明,最佳工艺条件为:原料液固比为50∶1(m L/g),SO_2气体流速为0. 4 L/min,双氧水添加量为0. 1 g/g原料,反应温度为80℃,反应时间为60 min,此时Li、Ni、Co、Mn浸出率分别为98. 10%,98. 04%,97. 81%,98. 05%。浸出液经氧化、沉淀、过滤、静置等除杂过程后,得到的镍钴锰回收产品符合锂离子电池正极材料制备的要求。  相似文献   

3.
邹海凤  程琥  王雪  陈卓  胡长刚 《应用化工》2019,(6):1366-1369
采用SO_2还原浸出工艺回收废旧锂离子电池正极材料中的有价金属。结果表明,最佳工艺条件为:原料液固比为50∶1(m L/g),SO_2气体流速为0. 4 L/min,双氧水添加量为0. 1 g/g原料,反应温度为80℃,反应时间为60 min,此时Li、Ni、Co、Mn浸出率分别为98. 10%,98. 04%,97. 81%,98. 05%。浸出液经氧化、沉淀、过滤、静置等除杂过程后,得到的镍钴锰回收产品符合锂离子电池正极材料制备的要求。  相似文献   

4.
采用湿式破碎分选、钴酸锂与碳粉混合物预焙烧、钴酸锂预焙烧产物与硫酸钠和浓硫酸混合体系焙烧、热水浸出焙烧产物中的钴,研究了钴酸锂的焙烧及浸出过程。实验结果显示:锂离子电池经湿式破碎分选后铜箔的回收率大于97%,钴酸锂粉末回收率大于98%;钴酸锂与碳粉混合物经700℃预焙烧2 h后再与硫酸钠和浓硫酸在200℃下焙烧4 h,焙烧产物用70℃热水浸出30 min,钴的浸出率可达97%;XRD分析焙烧产物发现生成了Na2Co(SO4)2和Na6Co(SO4)4。  相似文献   

5.
《应用化工》2022,(11):2679-2682
以废弃的手机锂离子电池为对象,研究了柠檬酸浸出钴酸锂的过程,考察了柠檬酸浓度、双氧水用量、反应温度及反应时间对钴酸锂浸出率的影响。结果表明,正极材料在马弗炉中焙烧2 h后,粘结剂被分解;柠檬酸与钴酸锂发生反应时,可使铝箔片与正极活性材料分离,同时得到含有价金属的溶液;在柠檬酸浓度1.25 mol/L、双氧水体积分数6%、反应温度50℃、反应时间50 min条件下,钴、锂浸出率分别为91.37%和92.97%,而铝浸出率较低,仅为15.10%。此工序简单及易于产业化发展,铝箔经清洗后可直接回收。  相似文献   

6.
随着锂离子电池在电动能源及储能领域的大量使用,废旧锂离子电池所带来的环境及资源问题日益突出。废旧锂离子电池中有价金属绿色高效的回收,在资源综合利用、节能环保及可持续发展等方面具有重大的现实意义,并逐渐成为世界各国的研究热点。综述了近年来国内外废旧锂离子电池中有价金属的回收现状,主要流程包括预处理、电极材料的溶解浸出及浸出液中有价金属的分离回收等环节,分析比较了各种回收途径的优缺点,并在此基础上对废旧锂离子电池回收工艺的发展趋势及应用前景做出了分析展望。  相似文献   

7.
用(NH4)2SO4焙烧分解碳素铬铁冶炼渣,提取有价金属,考察了焙烧温度、硫酸铵用量和焙烧时间对有价金属浸出率及过程相变的影响. 结果表明,焙烧过程中250~435℃间失重达65.5%,主要为NH3,H2O,SO3释放及(NH4)2SO4挥发. 优化的焙烧条件为(NH4)2SO4与铝镁渣质量比5:1、焙烧温度350℃,焙烧时间3.5 h. 有价金属转变为其相应的硫酸金属铵盐,且与(NH4)2SO4分解产物共存;该条件下的焙烧料90℃下浸出1 h,Mg, Al, Cr, Fe的浸出率分别为92%, 80%, 82%, 93%. 推测新生成的硫酸金属铵盐的片状聚集体阻碍碳素铬铁渣内部完全被(NH4)2SO4侵蚀.  相似文献   

8.
采用湿法技术从废旧锂离子电池中回收有价金属   总被引:2,自引:0,他引:2  
赵东江  马松艳 《化学工程师》2011,25(2):52-54,64
采取湿法回收技术对废旧锂离子电池进行处理,研究了回收铝、钴、锂金属元素的工艺条件.在90℃时,用10%NaOH浸出铝,其浸出率达到96%.在温度90℃、4mol·L-1H2SO4、固-液比1:8、反应时间100min的浸出条件下,钴、锂浸出率为92%.利用NaHCO3和Na2CO3,为沉淀剂,从酸浸出液分别制备得到Co...  相似文献   

9.
废旧锂离子电池中含有大量的金属钴与锂,具有较高的回收利用价值。文章以废旧锂离子电池中的正极材料为原料,考察了正极材料中的钴和锂在氨基磺酸和过氧化氢混合体系中浸出的实验。运用单因素实验,研究了氨基磺酸浓度、过氧化氢质量分数以及固液比等条件对Co2+、Li+浸出效果的影响。实验结果表明,反应产物中有氨基磺酸钴生成,当氨基磺酸浓度为0.75 mol/L、过氧化氢质量分数为5 vol.%、温度为60℃、固液比为5 g/L、时间为2 h时,钴和锂的浸出率均超过98%。  相似文献   

10.
采用改进的热还原技术从废旧正极片中有效回收锂,其中使用廉价的尿素作为提供氨(NH3)的唯一添加剂,考察了烧结温度、保温时间、质量比以及填充率对Li浸出率的影响。结果表明,在烧结温度为550℃、保温时间15 min、质量比1:2、填充率180 g/L的条件下,NCM材料中的Li浸出率达99.98%,基本没有其它金属浸出;而在烧结温度为600℃、保温时间30 min、质量比1:2、填充率180 g/L的条件下,LMO材料中的Li浸出率也高达98.49%。  相似文献   

11.
介绍了废旧锂离子电池回收处理的意义和必要性,对溶剂萃取法、化学沉淀法、电沉积法、络合离子交换法等提取和分离正极中钴、铝、镍、锂等有价金属的研究现状进行了评述。  相似文献   

12.
焙烧-浸出黄钾铁矾渣中多种有价金属   总被引:4,自引:0,他引:4  
实验研究了中低温焙烧-NH4Cl浸出-碱浸同时回收湿法炼锌黄钾铁矾渣中有价金属及Fe的新工艺. 黄钾铁矾渣在650℃下焙烧1 h后,渣中Zn, Pb的主要物相KFe3(SO4)2(OH)6分解为Fe2O3, ZnSO4和PbSO4. 在105℃、液固比10:2(w)条件下用6 mol/L NH4Cl浸出2 h,Zn, Pb和Cd的浸出率均在95%以上,同时Fe含量由焙烧后的23.21%提高到40%. 所得浸出渣再于160℃下用23.08%(w)的NaOH溶液浸出1 h,Fe含量可提高到54%左右,且As含量可降低到0.1%. 最终的浸出渣可作为铁精矿使用.  相似文献   

13.
丙酮溶解分离出正极材料,2 mol/L H2SO4+30%H2O2浸出,水解净化除杂后,P507三级萃取,H2SO4反萃取回收废弃锂离子电池中的钴元素,优化了各步骤的操作参数,最终得到适用于生产锂钴氧化物的硫酸钴,钴的回收率达到95%。  相似文献   

14.
介绍了锂离子电池的主要结构,废旧锂离子电池国内外回收利用处置现状和主要方式,通过分析废旧锂离子电池处置过程对环境的影响,说明我国废旧锂离子电池处理处置中存在的不足,提出了加强废旧锂离子电池处理处置污染防治、提高综合利用的建议。  相似文献   

15.
粉煤灰与硫酸氢铵焙烧反应动力学   总被引:1,自引:0,他引:1  
提出了NH4HSO4法焙烧粉煤灰提取Al2O3的新方法,考察了焙烧温度、粉煤灰中Al2O3与NH4HSO4摩尔比对粉煤灰中Al反应率的影响,研究了粉煤灰与NH4HSO4焙烧反应动力学. 结果表明,粉煤灰与NH4HSO4焙烧反应受固体产物层扩散控制,300, 350, 400℃下的反应速率常数分别为1.25′10-3, 1.56′10-3, 1.89′10-3 min-1,反应活化能为17.19 kJ/mol,反应动力学方程为1-2/3a-(1-a)2/3=0.0422exp[-17190/(RT)]t,最佳工艺条件为:焙烧温度400℃,Al2O3与NH4HSO4摩尔比1:8,焙烧时间60 min;该条件下Al反应率达90%以上,主要产物为NH4Al(SO4)2和NH4Fe(SO4)2.  相似文献   

16.
对钠化焙烧钒钛磁铁矿产生的新型焙烧钛渣,采用盐酸加压浸出方法提钛,根据反应前后物相变化,考察了酸浓度、液固比、反应温度、反应时间等对钛浸出率的影响. 结果表明,加压酸浸的最优条件为反应温度120℃,反应时间2 h,盐酸浓度30%(?),液固比8 mL/g. 该条件下,TiO2浸出率可达95%以上. 根据固体产物层内扩散控制模型的动力学方程和Arrhenius方程,利用焙烧渣在不同反应温度下的转化率与反应时间的关系得出焙烧渣在盐酸体系中常压分解动力学方程为1+2(1?x)?3(1?x)2/3?11.4e?31.2/(RT)t,反应的表观活化能为?31.2 kJ/(mol?K).  相似文献   

17.
锂离子电池隔膜的研究及发展现状   总被引:2,自引:0,他引:2  
综述了隔膜主要作用及性能、国内外研究发展现状。重点叙述了隔膜的制备方法,对干法和湿法的原理、工艺及所制得的隔膜性能上的区别进行了详细的阐述;同时简单介绍了隔膜的改性研究现状和新型电池隔膜的发展,最后对电池隔膜的未来发展趋势进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号