共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
用(NH4)2SO4焙烧分解碳素铬铁冶炼渣,提取有价金属,考察了焙烧温度、硫酸铵用量和焙烧时间对有价金属浸出率及过程相变的影响. 结果表明,焙烧过程中250~435℃间失重达65.5%,主要为NH3,H2O,SO3释放及(NH4)2SO4挥发. 优化的焙烧条件为(NH4)2SO4与铝镁渣质量比5:1、焙烧温度350℃,焙烧时间3.5 h. 有价金属转变为其相应的硫酸金属铵盐,且与(NH4)2SO4分解产物共存;该条件下的焙烧料90℃下浸出1 h,Mg, Al, Cr, Fe的浸出率分别为92%, 80%, 82%, 93%. 推测新生成的硫酸金属铵盐的片状聚集体阻碍碳素铬铁渣内部完全被(NH4)2SO4侵蚀. 相似文献
8.
采用湿法技术从废旧锂离子电池中回收有价金属 总被引:2,自引:0,他引:2
采取湿法回收技术对废旧锂离子电池进行处理,研究了回收铝、钴、锂金属元素的工艺条件.在90℃时,用10%NaOH浸出铝,其浸出率达到96%.在温度90℃、4mol·L-1H2SO4、固-液比1:8、反应时间100min的浸出条件下,钴、锂浸出率为92%.利用NaHCO3和Na2CO3,为沉淀剂,从酸浸出液分别制备得到Co... 相似文献
9.
废旧锂离子电池中含有大量的金属钴与锂,具有较高的回收利用价值。文章以废旧锂离子电池中的正极材料为原料,考察了正极材料中的钴和锂在氨基磺酸和过氧化氢混合体系中浸出的实验。运用单因素实验,研究了氨基磺酸浓度、过氧化氢质量分数以及固液比等条件对Co2+、Li+浸出效果的影响。实验结果表明,反应产物中有氨基磺酸钴生成,当氨基磺酸浓度为0.75 mol/L、过氧化氢质量分数为5 vol.%、温度为60℃、固液比为5 g/L、时间为2 h时,钴和锂的浸出率均超过98%。 相似文献
10.
采用改进的热还原技术从废旧正极片中有效回收锂,其中使用廉价的尿素作为提供氨(NH3)的唯一添加剂,考察了烧结温度、保温时间、质量比以及填充率对Li浸出率的影响。结果表明,在烧结温度为550℃、保温时间15 min、质量比1:2、填充率180 g/L的条件下,NCM材料中的Li浸出率达99.98%,基本没有其它金属浸出;而在烧结温度为600℃、保温时间30 min、质量比1:2、填充率180 g/L的条件下,LMO材料中的Li浸出率也高达98.49%。 相似文献
11.
12.
焙烧-浸出黄钾铁矾渣中多种有价金属 总被引:4,自引:0,他引:4
实验研究了中低温焙烧-NH4Cl浸出-碱浸同时回收湿法炼锌黄钾铁矾渣中有价金属及Fe的新工艺. 黄钾铁矾渣在650℃下焙烧1 h后,渣中Zn, Pb的主要物相KFe3(SO4)2(OH)6分解为Fe2O3, ZnSO4和PbSO4. 在105℃、液固比10:2(w)条件下用6 mol/L NH4Cl浸出2 h,Zn, Pb和Cd的浸出率均在95%以上,同时Fe含量由焙烧后的23.21%提高到40%. 所得浸出渣再于160℃下用23.08%(w)的NaOH溶液浸出1 h,Fe含量可提高到54%左右,且As含量可降低到0.1%. 最终的浸出渣可作为铁精矿使用. 相似文献
13.
14.
介绍了锂离子电池的主要结构,废旧锂离子电池国内外回收利用处置现状和主要方式,通过分析废旧锂离子电池处置过程对环境的影响,说明我国废旧锂离子电池处理处置中存在的不足,提出了加强废旧锂离子电池处理处置污染防治、提高综合利用的建议。 相似文献
15.
粉煤灰与硫酸氢铵焙烧反应动力学 总被引:1,自引:0,他引:1
提出了NH4HSO4法焙烧粉煤灰提取Al2O3的新方法,考察了焙烧温度、粉煤灰中Al2O3与NH4HSO4摩尔比对粉煤灰中Al反应率的影响,研究了粉煤灰与NH4HSO4焙烧反应动力学. 结果表明,粉煤灰与NH4HSO4焙烧反应受固体产物层扩散控制,300, 350, 400℃下的反应速率常数分别为1.25′10-3, 1.56′10-3, 1.89′10-3 min-1,反应活化能为17.19 kJ/mol,反应动力学方程为1-2/3a-(1-a)2/3=0.0422exp[-17190/(RT)]t,最佳工艺条件为:焙烧温度400℃,Al2O3与NH4HSO4摩尔比1:8,焙烧时间60 min;该条件下Al反应率达90%以上,主要产物为NH4Al(SO4)2和NH4Fe(SO4)2. 相似文献
16.
对钠化焙烧钒钛磁铁矿产生的新型焙烧钛渣,采用盐酸加压浸出方法提钛,根据反应前后物相变化,考察了酸浓度、液固比、反应温度、反应时间等对钛浸出率的影响. 结果表明,加压酸浸的最优条件为反应温度120℃,反应时间2 h,盐酸浓度30%(?),液固比8 mL/g. 该条件下,TiO2浸出率可达95%以上. 根据固体产物层内扩散控制模型的动力学方程和Arrhenius方程,利用焙烧渣在不同反应温度下的转化率与反应时间的关系得出焙烧渣在盐酸体系中常压分解动力学方程为1+2(1?x)?3(1?x)2/3?11.4e?31.2/(RT)t,反应的表观活化能为?31.2 kJ/(mol?K). 相似文献