首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The feasibility of long-term (>3 years), low-temperature (4-15 °C) and anaerobic bioreactor operation, for the treatment of acidified wastewater, was investigated. A hybrid, expanded granular sludge bed-anaerobic filter bioreactor was seeded with a mesophilic inoculum and employed for the mineralization of moderate-strength (3.75-10 kg chemical oxygen demand (COD) m−3) volatile fatty acid-based wastewaters at 4-15 °C. Bioprocess performance was assessed in terms of COD removal efficiency (CODRE), methane biogas concentration, and yield, and biomass retention. Batch specific methanogenic activity assays were performed to physiologically characterise reactor biomass.Despite transient disimprovements, CODRE and methane biogas concentrations exceeded 80% and 65%, respectively, at an applied organic loading rate (OLR) of 10 kg COD m−3 d−1 between 9.5 and 15 °C (sludge loading rate (SLR), 0.6 kg COD kg[VSS]−1 d−1). Over 50% of the granular sludge bed was lost to disintegration during operation at 9.5 °C, warranting a reduction in the applied OLR to 3.75-5 kg COD m−3 d−1 (SLR, c. 0.4-0.5 kg COD kg[VSS]−1 d−1). From that point forward, remarkably stable and efficient performance was observed during operation at 4-10 °C, with respect to CODRE (≥82%), methane biogas concentration (>70%) and methane yields (>4 lMethane d−1), suggesting the adaptation of our mesophilic inoculum to psychrophilic operating conditions.Physiological activity assays indicated the development of psychroactive syntrophic and methanogenic populations, including the emergence of putatively psychrophilic propionate-oxidising and hydrogenotrophic methanogenic activity. The data suggest that mesophilic inocula can physiologically adapt to sub-optimal operational temperatures: treatment efficiencies and sludge loading rates at 4 °C (day, 1243) were comparable to those achieved at 15 °C (day 0). Furthermore, long-term, low-temperature bioreactor operation may act as a selective enrichment for psychrophilic methanogenic activity from mesophilic inocula. The observed efficient and stable bioprocess performance highlights the potential for long-term, low-temperature bioreactor operation.  相似文献   

2.
Anaerobic biological treatment of phenolic wastewater at 15-18 degrees C   总被引:1,自引:0,他引:1  
Low-temperature, or psychrophilic (<20 degrees C) anaerobic digestion has been proven feasible for the mineralisation of simple wastewaters. In this study, hybrid expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactors were used to evaluate the feasibility of psychrophilic digestion for the treatment of phenol-containing wastewater. Efficient chemical oxygen demand and phenol removal were observed at organic and phenol loading rates of 5 kg COD m(-3)d(-1) and 0.4-1.2 kg phenol m(-3)d(-1) (400-1200 mg phenol [l wastewater](-1)), respectively. There was no long-term accumulation of volatile fatty acids in the reactor systems. Methanogenic activity was developed under psychrophilic conditions but anaerobic methane-producing populations remained mesophilic throughout the trial of 415 days.  相似文献   

3.
Due to unspecified operational problems, the specific acetoclastic activity (SAA) of the anaerobic granular sludge present in an industrial UASB reactor was considerably damaged (from 250 to less than 10mL CH(4)@STP/gVSS.d), significantly reducing the biogas production of that industrial unit. The hydrogenotrophic methanogenic activity exhibited a value of 600mL CH4@STP/gVSS.d, the settling velocity was 31.4+/-9.8m/h, the average equivalent diameter was 0.92+/-0.43mm, and about 70% of the VSS were structured in aggregates larger than 1mm. In order to study the recovery of the SAA, this sludge was collected and inoculated in a lab-scale expanded granular sludge blanket (EGSB) reactor. Ethanol was fed as the sole carbon source during a trial period of 106 days. Process monitoring included COD removal efficiency, methane production, and periodic determination of the specific methanogenic activity in the presence of acetate, propionate, butyrate, ethanol and H(2)/CO(2). Quantitative image analysis allowed for information to be obtained on granular fragmentation/erosion and filaments release. During the first operational period, biogas production was mainly due to the hydrogenotrophic activity. However, after 40 days, the SAA steadily increased achieving a maximum value of 183+/-13mL CH4@STP/gVSS.d. The onset of SAA recovery, granules breakdown and filaments release to the bulk occurred simultaneously. Further increase in SAA was accompanied by granular growth. In the last 25 days of operation, the size distribution was stable with more than 80% of projected area of aggregates corresponding to granules larger than 1mm (equivalent diameter). Confocal images from FISH hybridized sections of the granules showed that after SAA recovery, the granules developed an organized structure where an acidogenic/acetogenic external layer was apparent. Granular fragmentation and increase of filaments in the bulk, simultaneously with the increase in the acetoclastic activity are described for the first time and might represent a structural response of granular sludge to promote the optimal substrate uptake at minimal diffusion limitations.  相似文献   

4.
In many developing countries, the sewage consisting of faecal sludge is discharged untreated into rivers, lakes and coastal areas. This poses a health hazard and a risk to the ecosystem, and wastes a resource which could produce sustainable energy. This paper reports results from an anaerobic digester of 1000L used for digestion of faecal waste at mesophilic and thermophilic conditions. The specific biogas production rate from faecal sludge was in the range of 0.06–0.12 m3/(kg DM.d) at mesophilic conditions at NTP (Normal Temperature & Pressure i.e. 25 °C and 1 atm. Pressure) and 0.1–0.21 m3/(kg DM.d) at thermophilic conditions calculated at NTP. The number of toilet users affects the biogas production with changes in the organic loading rate. The results showed 97% reductionin chemical oxygen demand and 90% reduction in biological oxygen demand of anaerobic digester discharge water as compared to inlet substrate values.  相似文献   

5.
Two expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactors, R1 and R2, were operated at 15 degrees C for the treatment of toluene-contaminated volatile fatty acid-based wastewater. The seed inoculum and the R1 reactor were unexposed to toluene, prior to and during the trial, respectively. Both reactors were operated at a hydraulic retention time of 24h at applied organic loading rates of 0.71-1.43kg chemical oxygen demand (COD)m(-3)d(-1). Toluene was supplemented to the R2 influent at concentrations of 5-104 mg toluenel(-1) (solubilised in ethanol). Bioreactor performance was evaluated by COD and toluene removal efficiency, and the methane content of biogas (%). Specific methanogenic activity and toxicity assays were employed to investigate the activity and toluene toxicity thresholds of key trophic groups, respectively, within the seed and reactor biomass samples. COD and toluene removal efficiencies of 70-90% and 55-99%, respectively, were achieved during the 630-d trial. Metabolic assays suggested that a psychrotolerant H(2)/CO(2)-utilizing methanogenic community developed in the toluene-degrading biomass. The results indicate the viability of low-temperature anaerobic digestion for the treatment of wastewater containing toluene.  相似文献   

6.
Low-temperature or psychrophilic (<20 degrees C) anaerobic digestion (PAD) has recently been demonstrated as a cost-effective option for the treatment of a range of wastewater categories. The aim of this work was 2-fold: (1) to screen three anaerobic sludges, obtained from full-scale reactors, with respect to suitability for PAD of pharmaceutical-like, solvent-contaminated wastewater; (2) to assess the feasibility of PAD of this wastewater category. Toxicity thresholds of key trophic groups within three candidate biomass samples were assessed against solvents prevalent in pharmaceutical wastewaters (propanol, methanol and acetone). Specific methanogenic activity (SMA) assays indicated that the metabolic optimum of each candidate biomass was within the mesophilic range. One biomass sample exhibited higher SMA assays than the other candidate samples and was also the sample least methanogenically inhibited by the addition of solvents to batch cultures. This sludge was selected as the biomass of choice for laboratory-scale trials. Two identical expanded granular sludge bed (EGSB)-based anaerobic reactors were used for the treatment of solvent-contaminated wastewater at 15 degrees C, and at applied organic loading rates (OLRs) of 5-20 kg chemical oxygen demand (COD) m(-3)d(-1). COD removal efficiencies of 60-70% were achieved during the 450 day trial. In addition, SMA assays carried out at the conclusion of the trial indicated the development of a putatively psychrophilic hydrogenotrophic methanogenic community.  相似文献   

7.
The aims of this study were to demonstrate the (1) feasibility of psychrophilic, or low-temperature, anaerobic digestion (PAD) of phenolic wastewaters at 10–15 °C; (2) economic attractiveness of PAD for the treatment of phenol as measured by daily biogas yields and (3) impact on bioreactor performance of phenol loading rates (PLRs) in excess of those previously documented (1.2 kg phenol m−3 d−1). Two expanded granular sludge bed (EGSB)-based bioreactors, R1 and R2, were employed to mineralise a volatile fatty acid-based wastewater. R2 influent wastewater was supplemented with phenol at an initial concentration of 500 mg l−1 (PLR, 1 kg m−3 d−1). Reactor performance was measured by chemical oxygen demand (COD) removal efficiency, CH4 composition of biogas and phenol removal (R2 only). Specific methanogenic activity, biodegradability and toxicity assays were employed to monitor the physiological capacity of reactor biomass samples. The applied PLR was increased to 2 kg m−3 d−1 on day 147 and phenol removal by day 415 was 99% efficient, with 4 mg l−1 present in R2 effluent. The operational temperature of R1 (control) and R2 was reduced by stepwise decrements from 15 °C through to a final operating temperature of 9.5 °C. COD removal efficiencies of c. 90% were recorded in both bioreactors at the conclusion of the trial (day 673), when the phenol concentration in R2 effluent was below 30 mg l−1. Daily biogas yields were determined during the final (9.5 °C) operating period, when typical daily R2 CH4 yields of c. 3.3 l CH4 g−1 CODremoved d−1 were recorded. The rate of phenol depletion and methanation by R2 biomass by day 673 were 68 mg phenol g VSS−1 d−1 and 12–20 ml CH4 g VSS−1 d−1, respectively.  相似文献   

8.
Four expanded granular sludge bed (EGSB) bioreactors were seeded with a mesophilically-grown granular sludge and operated in duplicate for mesophilic (37 °C; R1 & R2) and low- (15°; R3 & R4) temperature treatment of a synthetic volatile fatty acid (VFA) based wastewater (3 kg COD m−3 d−1) with one of each pair (R1 & R3) supplemented with increasing concentrations of trichloroethylene (TCE; 10, 20, 40, 60 mg l−1) and one acting as a control. Bioreactor performance was evaluated by % COD removal efficiency and % biogas methane (CH4) content. Quantitative Polymerase Chain Reaction (qPCR) was used to investigate the methanogenic community composition and dynamics in the bioreactors during the trial, while specific methanogenic activity (SMA) and toxicity assays were utilized to investigate the activity and TCE/dichloroethylene (DCE) toxicity thresholds of key trophic groups, respectively. At both 37 °C and 15 °C, TCE levels of 60 mg l−1 resulted in the decline of % COD removal efficiencies to 29% (Day 235) and 37% (Day 238), respectively, and in % biogas CH4 to 54% (Day 235) and 5% (Day 238), respectively. Despite the inhibitory effect of TCE on the anaerobic digestion process, the main drivers influencing methanogenic community development, as determined by qPCR and Non-metric multidimensional scaling analysis, were (i) wastewater composition and (ii) operating temperature. At the apical TCE concentration both SMA and qPCR of methanogenic archaea suggested that acetoclastic methanogens were somewhat inhibited by the presence of TCE and/or its degradation derivatives, while competition by dechlorinating organisms may have limited the availability of H2 for hydrogenotrophic methanogenesis. In addition, there appeared to be an inverse correlation between SMA levels and TCE tolerance, a finding that was supported by the analysis of the inhibitory effect of TCE on two additional biomass sources. The results indicate that low-temperature anaerobic digestion is a feasible approach for the treatment of TCE-containing wastewater.  相似文献   

9.
The feasibility of low-temperature (7 °C) anaerobic digestion for the treatment of a trichloroethylene (TCE) contaminated wastewater was investigated. Two expanded granular sludge bed (EGSB) bioreactors (R1 and R2) were employed for the mineralisation of a synthetic volatile fatty acid based wastewater at an initial organic loading rate (OLR) of 3 kg COD m−3 d−1, and an operating temperature of 15 °C. Successive reductions in OLR to 0.75 kg COD m−3 d−1, and operational temperature to 7 °C, resulted in stable bioreactor operation by day 417, with COD removal efficiency and biogas CH4 content ≥74%, for both bioreactors. Subsequently, the influent to R1 was supplemented with increasing concentrations (10, 20, 30 mg l−1) of TCE, while R2 acted as a control. At an influent TCE concentration of 30 mg l−1, although phase average TCE removal rates of 79% were recorded, a sustained decrease in R1 performance was observed, with COD removal of 6%, and % biogas CH4 of 3% recorded on days 595 and 607, respectively. Specific methanogenic activity (SMA) assays identified a general shift from acetate- to hydrogen-mediated methanogenesis in both R1 and R2 biomass, while toxicity assays confirmed an increased sensitivity of the acetoclastic community in R1 to TCE and dichloroethylene (DCE), which contributed to acetate accumulation. Quantitative Polymerase Chain Reaction (qPCR) analysis of the methanogenic community confirmed the dominance of hydrogenotrophic methanogens in both R1 and R2, representing 71-89% of the total methanogenic population, however acetoclastic Methanosaeta were the dominant organisms, based on 16S rRNA gene clone library analysis of reactor biomass. The greatest change in the bacterial community, as demonstrated by UPGMA analysis of DGGE banding profiles, was observed in R1 biomass between days 417 and 609, although 88% similarity was retained between these sampling points.  相似文献   

10.
Effect of microwave pretreatment (MW) high temperature (175 °C) and MW intensity to waste activated sludge digested with acclimatized inoculum in single- and dual-stage semi-continuous mesophilic anaerobic digesters at different sludge retention times (SRTs) (20, 10 and 5 days) were investigated. MW pretreatment led to similar sludge stabilization at low SRTs (5 and 10 days). Although lowering MW intensity slightly improved sludge solubilization, it had a negative effect on digestion at low SRTs. Single-stage digesters with MW pretreatment surpass dual-stage digesters performances.  相似文献   

11.
张祥 《山西建筑》2014,(6):137-139
结合传统的污泥厌氧消化周期长、消化速率低的特点,综述了热、化学、生物和机械预处理方法及其在研究中对污泥厌氧消化的影响,并提出厌氧消化预处理方法的展望,以期改善污泥理化性质,提高厌氧消化效率。  相似文献   

12.
It is necessary to identify the best operating conditions of the reactor to achieve a satisfactory performance of an anaerobic digester.This paper discusses the performance of a particular fixed-film bioreactor with sponges as support. This evaluation was made at laboratory scale through a comparison between a fixed-film bioreactor and a conventional continuous stirred tank reactor (CSTR).The results show good reactor productivity as well as satisfactory sludge stabilization.  相似文献   

13.
以北方某污水处理厂(A/O工艺)剩余活性污泥为研究对象,考察了超声波与生石灰联合预处理对后续剩余污泥两相中温厌氧消化的影响,结果表明:两相反应器内污泥絮体被充分破坏,厌氧消化过程中在产酸相和产甲烷相内,NH3-N浓度均有提高,但是没有出现磷的显著释放。  相似文献   

14.
This laboratory-scale study attempted performance improvement and decolourization in the high-solid thermophilic anaerobic digestion of thermally pretreated sewage sludge, as it tends to be disturbed by ammonia inhibition and colour generation. Sewage sludge was adjusted to 7%–8% total solids (TS), and pretreated at 150°C for 1 h. The digesters were operated at 55°C and 20 days hydraulic retention time. An addition of powdered activated carbon (approximately 2% of the feed TS) significantly contributed to the removal of propionate and reduced the colour in digested sludge by about 27%. Microbial analysis detected less abundance of bacterial Synergistia and archaeal Methanosarcina and implied more hydrogenotrophic methanogenesis with the activated carbon addition. Conditioning with ferric chloride for dewatering digested sludge mitigated the colour of dewatered liquor by about 67%. Therefore, these methods were demonstrated to be effective and partly overcome the above-mentioned problems.  相似文献   

15.
Temperature-phased anaerobic digestion (TPAD) is an emerging technology that facilitates improved performance and pathogen destruction in anaerobic sewage sludge digestion by optimising conditions for 1) hydrolytic and acidogenic organisms in a first-stage/pre-treatment reactor and then 2) methogenic populations in a second stage reactor. Pre-treatment reactors are typically operated at 55–65 °C and as such select for thermophilic bacterial communities. However, details of key microbial populations in hydrolytic communities and links to functionality are very limited. In this study, experimental thermophilic pre-treatment (TP) and control mesophilic pre-treatment (MP) reactors were operated as first-stages of TPAD systems treating activated sludge for 340 days. The TP system was operated sequentially at 50, 60 and 65 °C, while the MP rector was held at 35 °C for the entire period. The composition of microbial communities associated with the MP and TP pre-treatment reactors was characterised weekly using terminal-restriction fragment length polymorphism (T-RFLP) supported by clone library sequencing of 16S rRNA gene amplicons. The outcomes of this approach were confirmed using 454 pyrosequencing of gene amplicons and fluorescence in-situ hybridisation (FISH). TP associated bacterial communities were dominated by populations affiliated to the Firmicutes, Thermotogae, Proteobacteria and Chloroflexi. In particular there was a progression from Thermotogae to Lutispora and Coprothermobacter and diversity decreased as temperature and hydrolysis performance increased. While change in the composition of TP associated bacterial communities was attributable to temperature, that of MP associated bacterial communities was related to the composition of the incoming feed. This study determined processes driving the dynamics of key microbial populations that are correlated with an enhanced hydrolytic functionality of the TPAD system.  相似文献   

16.
Pre-treatment of sisal pulp prior to its anaerobic digestion was investigated using an activated sludge mixed culture under aerobic conditions in batch bioreactors at 37 degrees C. The progression of aerobic pre-treatment of the residue in relation to the activities of some extracellular hydrolytic enzymes in the slurry was monitored. The highest activity of hydrolytic enzymes was obtained at 9 h of pre-treatment. Filter paper cellulase had a maximum activity of 0.90 IU/ml, while carboxymethyl cellulase, amylase and xylanase were produced to a maximum of about 0.40 IU/ml. The methane yield obtained after anaerobic digestion of the pre-treated pulp ranged between 0.12 and 0.24 m3 CH4/kg VS added. The highest and lowest values were obtained for 9 and 72 h of pre-treatment, respectively. Nine hours of pre-treatment of sisal pulp prior to anaerobic digestion demonstrated a 26% higher methane yield when compared to the sisal pulp without pre-treatment. The consortia of microorganisms in activated sludge demonstrated a useful potential in the production of hydrolases acting on major macromolecules of sisal pulp. The fact that a correlation was observed between high enzyme activity and high methane yield at 9 h of aerobic pre-treatment suggests that such a short pre-treatment period could be an alternative option for increasing solubilization of sisal pulp and promoting methane productivity.  相似文献   

17.
Huoqing Ge 《Water research》2010,44(1):123-4768
Pre-treatment is used extensively to improve degradability and hydrolysis rate of material being fed into digesters. One emerging process is temperature phased anaerobic digestion (TPAD), which applies a short (2 day) 50-70 °C pre-treatment step prior to 35 °C digestion in the main stage (10-20 days). In this study, we evaluated a thermophilic-mesophilic TPAD against a mesophilic-mesophilic TPAD treating primary sludge. Thermophilic-mesophilic TPAD achieved 54% VS destruction compared to 44% in mesophilic-mesophilic TPAD, with a 25% parallel increase in methane production. Measurements of soluble COD and NH4+-N showed increased hydrolysis extent during thermophilic pre-treatment. Model based analysis indicated the improved performance was due to an increased hydrolysis coefficient rather than an increased inherent degradability, suggesting while TPAD is suitable as an intensification process, a larger main digester could achieve similar impact.  相似文献   

18.
The anaerobic digestion model presented here considers a two step process. First, acidogenic bacteria convert glucose into acetate then methanogenic bacteria convert this acid into methane and carbon dioxide. The biomass and metabolite production rates are described by distinct relations. Therefore, there is not a direct relationship between the growth and the energy production related to metabolite formation. The inhibitory effects of the unionized acid concentration on growth rate of both bacterial populations and the methane production from acetate were considered separately. The model was tested in batch cultures with two types of organic loads, i.e. pea bleaching wastewaters and a synthetic substrate containing sucrose and organic acid. The model allowed to simulate satisfactorily the methane production under very different operational conditions.  相似文献   

19.
Conventionally treated sewage sludge may contain high concentrations of potentially pathogenic microorganisms and additional treatment is required to minimise the risks to health if it is to be recycled to agricultural land. Mesophilic anaerobic digestion (MAD) is the most widely used process in the UK for stabilising sludge prior to agricultural recycling, but little is known about the fate of a number of enteric pathogens as the sludge passes through the treatment processes. The aim of this study was to determine the efficiency of MAD in removing the bacterial enteric pathogens, Salmonella senftenberg, Listeria monocytogenes and Campylobacter jejuni which were added as a spike to the digester feedstock, together with the die-off of indigenous Escherichia coli already present in the sludge. The primary sludge digestion stage of MAD was found to achieve a log removal of 1.66 for E. coli, 2.23 for L. monocytogenes and 2.23 for S. senftenberg. However, the extent of die-off was a function of the numbers of pathogens in the feed and as these increased the log removal also increased. The numbers of C. jejuni were not affected by primary sludge digestion. Additional die-off was provided by secondary sludge digestion with log removals of 1.70 for E. coli, 2.10 for S. senftenberg and 0.36 for C. jejuni.  相似文献   

20.
The survival of three enteroviruses (polio 1, coxsackie B3 and echo 1) and a rotavirus (SA-11) was studied under laboratory conditions. The effects of temperature, dissolved oxygen, detention time, sludge source and virus type on virus inactivation were determined. Temperature was the single most important factor influencing the rate of virus inactivation. No significant differences were found for virus inactivation rates at dissolved oxygen levels between 0.9 and 5.8 mg/l. However, the inactivation rate of the viruses under aerobic conditions was found to be significantly greater than the inactivation rate under anaerobic conditions (−0.77log10/day vs −0.33 log10/day). Sludge source, detention time and virus type did not significantly influence the rate of virus inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号