首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
A flexible numerical scheme for the discretization of the space–time fractional diffusion equation is presented. The model solution is discretized in time with a pseudo-spectral expansion of Mittag–Leffler functions. For the space discretization, the proposed scheme can accommodate either low-order finite-difference and finite-element discretizations or high-order pseudo-spectral discretizations. A number of examples of numerical solutions of the space–time fractional diffusion equation are presented with various combinations of the time and space derivatives. The proposed numerical scheme is shown to be both efficient and flexible.  相似文献   

2.
With the advancement of computer hardware, the trend of research in computational fluid dynamics is moving towards development of highly accurate, unstructured-mesh compatible, robust and efficient numerical methods for simulating problems involving strong transient effects and relatively complex geometries as well as physics. The space–time conservation element and solution element method is a genuinely multi-dimensional, unstructured-mesh compatible numerical framework, which was built from a consistent and synergetic integration of conservation laws in the space–time domain to avoid the limitations of conventional schemes, such as the use of 1-D flux reconstruction with a Riemann solver. It has been shown that the framework can be used for time-accurate simulations of a variety of problems involving unsteady waves, strong flow discontinuities, and their interactions with remarkable accuracy. However, this method at its current state has encountered the challenge in balancing the robustness and numerical accuracy when highly stretched meshes were used in viscous flow simulation. In this paper, we briefly discuss various numerical approaches developed for this framework thus far as well as their strengths and weaknesses, and conduct a comparative study of their numerical accuracies using some 2-D viscous benchmark test cases. The application of this method in realistic, complex 3-D problems is also included here to demonstrate its computational efficiency in large-scale computing.  相似文献   

3.
Since the 1960s, there has been a strong industrial development in the Sines area, on the southern Atlantic coast of Portugal, including the construction of an important industrial harbour and of, mainly, petrochemical and energy-related industries. These industries are, nowadays, responsible for substantial emissions of SO2, NOx, particles, VOCs and part of the ozone polluting the atmosphere. The major industries are spatially concentrated in a restricted area, very close to populated areas and natural resources such as those protected by the European Natura 2000 network. Air quality parameters are measured at the emissions’ sources and at a few monitoring stations. Although air quality parameters are measured on an hourly basis, the lack of representativeness in space of these non-homogeneous phenomena makes even their representativeness in time questionable. Hence, in this study, the regional spatial dispersion of contaminants is also evaluated, using diffusive-sampler (Radiello Passive Sampler) campaigns during given periods. Diffusive samplers cover the entire space extensively, but just for a limited period of time.In the first step of this study, a space–time model of pollutants was built, based on a stochastic simulation—direct sequential simulation—with local spatial trend. The spatial dispersion of the contaminants for a given period of time—corresponding to the exposure time of the diffusive samplers—was computed by ordinary kriging. Direct sequential simulation was applied to produce equiprobable spatial maps for each day of that period, using the kriged map as a spatial trend and the daily measurements of pollutants from the monitoring stations as hard data.In the second step, the following environmental risk and costs maps were computed from the set of simulated realizations of pollutants: (i) maps of the contribution of each emission to the pollutant concentration at any spatial location; (ii) costs of badly located monitoring stations.  相似文献   

4.
We give a sufficient condition for a bang–bang extremal to be a strong local optimizer for the minimum time problem with fixed endpoints. We underline that the conditions imply that the optimum is local with respect to the state and not necessarily to the final time. Moreover, it is given through a finite-dimensional minimization problem, hence is suited for numerical verification. A geometric interpretation through the projection of the Hamiltonian flow on the state space is also given.  相似文献   

5.
In this paper the concepts of dissipativity and the exponential dissipativity are used to provide sufficient conditions for guaranteeing asymptotic stability of a time delay dynamical system. Specifically, representing a time delay dynamical system as a negative feedback interconnection of a finite‐dimensional linear dynamical system and an infinite‐dimensional time delay operator, we show that the time delay operator is dissipative with respect to a quadratic supply rate and with a storage functional involving an integral term identical to the integral term appearing in standard Lyapunov–Krasovskii functionals. Finally, using stability of feedback interconnection results for dissipative systems, we develop sufficient conditions for asymptotic stability of time delay dynamical systems. The overall approach provides a dissipativity theoretic interpretation of Lyapunov–Krasovskii functionals for asymptotically stable dynamical systems with arbitrary time delay. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
The paper is concerned with a time integration scheme which conserves energy, momentum and angular momentum for shells exhibiting arbitrary non-linearities in the strain–displacement relations together with a possible non-linear constitutive behaviour and displacement-dependent loading. The formulation is general and can apply to any shell formulation. However, we derive the equations for the specific case of the so-called seven-parametric shell theory which is characterized by a quadratic displacement field over the shell thickness. Numerical examples of large overall motion of shells are provided showing the main features of the algorithm.  相似文献   

7.
Nonequidistant sampling potentially enhances the performance/cost trade‐off that is present in traditional equidistant sampling schemes. The aim of this paper is to develop a systematic feedback control design approach for systems that go beyond equidistant sampling. A loop‐shaping design framework for such nonequidistantly sampled systems is developed that addresses both stability and performance. The framework only requires frequency response function measurements of the LTI system, whereas it appropriately addresses the linear periodically time‐varying behavior introduced by the nonequidistant sampling. Experimental validation on a motion system demonstrates the superiority of the design framework for nonequidistantly sampled systems compared to traditional designs that rely on equidistant sampling.  相似文献   

8.
This paper deals with delay‐dependent H control for discrete‐time systems with time‐varying delay. A new finite sum inequality is first established to derive a delay‐dependent condition, under which the resulting closed‐loop system via a state feedback is asymptotically stable with a prescribed H noise attenuation level. Then, an iterative algorithm involving convex optimization is proposed to obtain a suboptimal H controller. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we show how to use the theory of fractional ideals in order to study the fractional representation approach to analysis and synthesis problems for SISO systems. Within this mathematical framework, we give necessary and sufficient conditions so that a plant is internally/strongly/bistably stabilizable or admits a (weak) coprime factorization. Moreover, we show how to generalize the Youla–Ku era parametrization of the stabilizing controllers to any stabilizable plant which does not necessarily admit a coprime factorization. This parametrization is generally affine in two free parameters.  相似文献   

10.
This paper investigates the problem of distributed reliable H consensus control for high‐order networked agent systems with actuator faults and switching undirected topologies. The Lipschitz nonlinearities, several types of actuator faults, and exogenous disturbances are considered in subsystems. Suppose the communication network of the multi‐agent systems may switch among finite connected graphs. By utilizing the relative state information of neighbors, a new distributed adaptive reliable consensus protocol is presented for actuator failure compensations in individual nodes. Note that the Lyapunov function for error systems may not decrease as the communication network is time‐varying; as a result, the existing distributed adaptive control technique cannot be applied directly. To overcome this difficulty, the topology‐based average dwell time approach is introduced to deal with switching jumps. By applying topology‐based average dwell time approach and Lyapunov theory, the distributed controller design condition is given in terms of LMIs. It is shown that the proposed scheme can guarantee that the reliable H consensus problem is solvable in the presence actuator faults and external disturbance. Finally, two numerical examples are given the effectiveness of the proposed theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号