首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过缝合的方法改善织物增强复合材料层合板的层间断裂韧性.采用双悬臂梁(DCB)试验测试和研究了缝合层合板的层间断裂韧性与断裂行为.为了评价缝合工艺参数(缝合密度)对层间断裂韧性的影响,用改进的插入型夹具在实测不同缝合工艺层合板的Ⅰ型层间断裂韧性值(GIC)的基础上,分析和阐明了缝合工艺参数(缝合密度)与GIC间的关系;以提高层合板的平均层间断裂韧性值为目标,以拉伸和弯曲强度为约束条件优化了缝合工艺;采用摄影显微镜对分层断裂面进行了观察,分析和考察了缝合对其它性能的影响.结果表明:改进的插入型夹具可方便地完成缝合层合板的Ⅰ型层间断裂韧性测试;缝合后裂纹不连续扩展,缝合密度对裂纹扩展行为有较大影响;随着缝合密度的增大,层间断裂韧性值增大,但拉伸和弯曲强度降低,缝合密度存在最佳值.  相似文献   

2.
通过缝合的方法改善织物增强复合材料层合板的层间断裂韧性.采用双悬臂梁(DCB)试验测试和研究了缝合层合板的层间断裂韧性与断裂行为.为了评价缝合工艺参数(缝合密度)对层间断裂韧性的影响, 用改进的插入型夹具在实测不同缝合工艺层合板的I型层间断裂韧性值(GIC)的基础上, 分析和阐明了缝合工艺参数(缝合密度)与GIC间的关系; 以提高层合板的平均层间断裂韧性值为目标, 以拉伸和弯曲强度为约束条件优化了缝合工艺; 采用摄影显微镜对分层断裂面进行了观察, 分析和考察了缝合对其它性能的影响.结果表明 改进的插入型夹具可方便地完成缝合层合板的I型层间断裂韧性测试; 缝合后裂纹不连续扩展, 缝合密度对裂纹扩展行为有较大影响; 随着缝合密度的增大, 层间断裂韧性值增大, 但拉伸和弯曲强度降低, 缝合密度存在最佳值.  相似文献   

3.
This article explores the capability of the Cohesive Zone Model in predicting the critical load of blunt notched specimens made of coarse‐grained polycrystalline graphite, a brittle material that has gained the attention of researchers because of its favourable properties for protection against thermal loads. To that aim, 39 different tests on U‐notched and V‐notched specimens made of this material, with loading modes raging from mode I to mixed mode I/II, have been modelled by using the Cohesive Zone Model. The model has been implemented through the embedded crack approach, avoiding thus the necessity of defining the crack trajectory prior to the simulation because it is automatically generated once the maximum principal stress overcomes the tensile strength of the material. The numerical predictions obtained show good agreement with the experimental results.  相似文献   

4.
The influence of carbon nanotube (CNT) concentration on the fracture toughness of poly(methyl methacrylate) (PMMA) was examined on single‐edge V‐notched‐beam (SEVNB) specimens. Six groups of SEVNB specimens containing 0.5, 1, 2, 4, 8.5 wt% of CNTs and neat PMMA as a reference were tested. First, a notch was introduced into the specimens by a specially made disk whose edge is V‐shaped with a 30° angle and a 30 μm tip width. As suggested by an American Society for Testing and Materials Standard for polymers, induction of a natural crack was attempted, without success. Therefore, fracture toughness values were determined with the ‘sharp’ machined notch by means of a calibration formula. These were compared to values obtained using a stress concentration factor and found to differ by less than 3%. The latter calculation takes into account the geometry of the notch. Results showed a decrease in the fracture toughness values with an increase in the CNT concentration. For specimens in which a natural crack was attempted, referred to as a razor‐cut notch, a significant increase in the apparent fracture toughness was observed, as a result of the induced damage.  相似文献   

5.
The transfer of matrix toughness to composite mode I interlaminar fracture toughness (G Ic ) has been investigated in unidirectional glass-fibre reinforced composites with brittle and rubber-toughened vinyl ester matrices. Single-edge-notch bend (SENB) and double cantilever beam (DCB) specimens were used for matrix and composite G Ic characteristion, respectively. The initial crack opening displacement rate was used as the parameter for comparison of G Ic results. Matrix G Ic was completely transferred to composite G Ic for crack initiation (G Ic-init) in the brittle-matrix composites, but in the toughened composites transfer was only partial due to the presence of fibres. The conclusion is that the maximum contribution to energy absorption by the matrix is more accurately reflected by G Ic-init, and should be used for further assessment of the enhancing effect of fibre bridging during steady-state crack propagation, instead of matrix G Ic . A plot of composite G Ic for steady-state crack propagation, G Ic-prop versus G Ic-init indicates that the enhancing effect of fibre bridging is greater in the toughened composites. This enhancement is related to a larger deformation zone size in the toughened matrices.  相似文献   

6.
This paper presents a material model to reproduce crack propagation in cement‐based material specimens under mixed‐mode loading. Its numerical formulation is based on the cohesive crack model, proposed by Hillerborg, and extended for the mixed‐mode case. This model is inspired by former works by Gálvez et al but implemented for its use in a finite element code at a material level, that is to say, at an integration point level. Among its main features, the model is able to predict the crack orientation and can reproduce the fracture behaviour under mixed‐mode fracture loading. In addition, several experimental results found in the literature are properly reproduced by the model.  相似文献   

7.
The paper aims to analyse the effects of pretreatment thermal cycles on both mechanical and fracture parameters of the red Verona marble, which is a natural stone of sedimentary formation. The effects of the thermal pretreatment, consisting of freeze/thaw cycles and simulating the atmospheric ageing on the material, are evaluated in terms of changes of the aforementioned parameters. Note that a wide variety of both specimen types and methods to determine mode I plain strain fracture toughness of rocks are available in the literature. The two‐parameter model originally proposed for plain concrete is herein adopted. Such a method, based on the experimental data obtained from three‐point bending tests on single edge‐notched specimens, is able to take into account the slow nonlinear crack growth occurring before the peak load, typical of quasibrittle materials, and presents the advantages of easy specimens preparation and simple test configuration.  相似文献   

8.
A quasi‐static progressive damage model for prediction of the fracture behaviour and strength of adhesively bonded fibre‐reinforced polymer joints is introduced in this paper. The model is based on the development of a mixed‐mode failure criterion as a function of a master R‐curve derived from the experimental results obtained from standard fracture mechanics joints. Consequently, the developed failure criterion is crack‐length and mode‐mixity dependent, and it takes into account the contribution of the fibre‐bridging effect. Energy release rate values for adhesively bonded double‐lap joints are obtained by using the virtual crack closure technique method in a finite element model, and the numerically obtained strain energy release rate is compared to the critical strain energy release rate given by the mixed‐mode failure criterion. The entire procedure is implemented in a numerical algorithm, which was successfully used for predicting the strength and R‐curve response of adhesively bonded double‐lap structural joints made of pultruded glass fibre‐reinforced polymers and epoxy adhesives.  相似文献   

9.
This paper investigates the influence of fibre volume fraction on the mode I interlaminar fracture toughness G Ic of a glass-fibre/vinyl ester composite. Two fibre volume fraction parameters are defined; a global value for the composite specimen and a value for the fibre-dense intralaminar regions. The range of global fibre volume fraction studied was 32–52 %. Results show that G Ic values for crack initiation are independent of fibre volume fraction and similar to matrix resin G Ic . Variations in the G Ic for steady-state crack propagation, and the amount of fibre bridging, are not completely explained by changes in global fibre volume fraction. Instead they are consistent with fibre volume fraction in the fibre-dense intralaminar regions, through which the crack preferred to grow. It is concluded that this latter parameter is more relevant for G Ic characterisation as a function of fibre volume fraction.  相似文献   

10.
A sample geometry is proposed for performing microscale tensile experiments based on a push‐pull design. It allows measuring mode 1 fracture toughness under uniform far‐field loading. Finite element simulations were performed to determine the geometry factor, which was nearly constant for Young's moduli spanning 2 orders of magnitude. It was further verified that mode 1 stress intensity factor KI is nearly constant over the width of the tension rods and an order of magnitude higher than KII and KIII. Notched samples with different a/w ratios were prepared in (100)‐oriented Si by a combination of reactive ion etching and focused ion beam milling. The mode 1 fracture toughness KI,q was constant with a/w and in average 1.02 ± 0.06 MPa√m in good agreement with existing literature. The geometry was characterized and experimentally validated and may be used for fracture toughness measurements of all material classes. It is especially interesting when a uniaxial, homogeneous stress field is desired, if crack tip plasticity is important, or when positioning of the indenter is difficult.  相似文献   

11.
Potassium‐ion batteries (KIBs) are a core energy storage device that can meet the need for scalable and affordable stationary applications because they use low‐cost and earth‐abundant potassium. In addition, KIB shares a similar storage mechanism with current Li‐ion batteries. As the key to optimizing a battery's performance, the development of high‐performance electrode materials helps to increase the feasibility of KIB technology. In this sense, phosphorus‐based materials (i.e., phosphorus and metal phosphide) with high theoretical capacity and low redox potential tick all the right boxes as a material of choice. A rapid glimpse at recent studies on phosphorus‐based anode materials for advanced KIBs is provided, covering the synthetic methods, reaction mechanisms, electrochemical properties, and performances. In addition, several promising strategies are highlighted to address the imminent challenges faced by phosphorus‐based anode materials, hoping to cast an insightful outlook for possible future direction in this field.  相似文献   

12.
Grid‐scale energy storage batteries with electrode materials made from low‐cost, earth‐abundant elements are needed to meet the requirements of sustainable energy systems. Sodium‐ion batteries (SIBs) with iron‐based electrodes offer an attractive combination of low cost, plentiful structural diversity and high stability, making them ideal candidates for grid‐scale energy storage systems. Although various iron‐based cathode and anode materials have been synthesized and evaluated for sodium storage, further improvements are still required in terms of energy/power density and long cyclic stability for commercialization. In this Review, progress in iron‐based electrode materials for SIBs, including oxides, polyanions, ferrocyanides, and sulfides, is briefly summarized. In addition, the reaction mechanisms, electrochemical performance enhancements, structure–composition–performance relationships, merits and drawbacks of iron‐based electrode materials for SIBs are discussed. Such iron‐based electrode materials will be competitive and attractive electrodes for next‐generation energy storage devices.  相似文献   

13.
Parameters of universal form of weight functions having four terms and five terms are derived for edge cracks in finite width of plate. The standard Tada Green's function is taken as the basis for the derivation. The shape of universal form of weight functions considered enables closed form expressions for cohesive toughness of three‐point bending test geometry of notched concrete beams due to linear cohesive stress distribution in the fictitious fracture zone. This solution provides a viable method to determine the double‐K fracture parameters: the initiation toughness, and the unstable toughness for mode I fracture of concrete beam. A comparison with existing analytical method shows that the weight function method for determination of the double‐K fracture parameters yields results without any appreciable error. The use of weight function will not only simplify the calculation to obtain the double‐K fracture parameters, and but also it will avoid the need of skilled numerical integration technique due to singularity problem at the integral boundary.  相似文献   

14.
The emergence of multidrug resistant bacterium threatens to unravel global healthcare systems, built up over centuries of medical research and development. Current antibiotics have little resistance against this onslaught as bacterium strains can quickly evolve effective defense mechanisms. Fortunately, alternative therapies exist and, at the forefront of research lays the photodynamic inhibition approach mediated by porphyrin based photosensitizers. This review will focus on the development of various porphyrins compounds and their incorporation as small molecules, into polymers, fibers and thin films as practical therapeutic agents, utilizing photodynamic therapy to inhibit a wide spectrum of bacterium. The use of photodynamic therapy of these porphyrin molecules are discussed and evaluated according to their electronic and bulk material effect on different bacterium strains. This review also provides an insight into the general direction and challenges facing porphyrins and derivatives as full‐fledged therapeutic agents and what needs to be further done in order to be bestowed their rightful and equal status in modern medicine, similar to the very first antibiotic; penicillin itself. It is hoped that, with this perspective, new paradigms and strategies in the application of porphyrins and derivatives will progressively flourish and lead to advances against disease.  相似文献   

15.
16.
Investigation of the mechanics of natural materials, such as spider silk, abalone shells, and bone, has provided great insight into the design of materials that can simultaneously achieve high specific strength and toughness. Research has shown that their emergent mechanical properties are owed in part to their specific self‐organization in hierarchical molecular structures, from nanoscale to macroscale, as well as their mixing and bonding. To apply these findings to manmade materials, researchers have devoted significant efforts in developing a fundamental understanding of multiscale mechanics of materials and its application to the design of novel materials with superior mechanical performance. These efforts included the utilization of some of the most promising carbon‐based nanomaterials, such as carbon nanotubes, carbon nanofibers, and graphene, together with a variety of matrix materials. At the core of these efforts lies the need to characterize material mechanical behavior across multiple length scales starting from nanoscale characterization of constituents and their interactions to emerging micro‐ and macroscale properties. In this report, progress made in experimental tools and methods currently used for material characterization across multiple length scales is reviewed, as well as a discussion of how they have impacted our current understanding of the mechanics of hierarchical carbon‐based materials. In addition, insight is provided into strategies for bridging experiments across length scales, which are essential in establishing a multiscale characterization approach. While the focus of this progress report is in experimental methods, their concerted use with theoretical‐computational approaches towards the establishment of a robust material by design methodology is also discussed, which can pave the way for the development of novel materials possessing unprecedented mechanical properties.  相似文献   

17.
In this work, a refined interelement diffuse fracture theoretical model, based on a cohesive finite element approach, is proposed for concrete and other quasibrittle materials. This model takes advantage of a novel micromechanics‐based calibration technique for reducing the artificial compliance associated with the adopted intrinsic formulation. By means of this technique, the required values for the elastic stiffness parameters to obtain nearly invisible cohesive interfaces are provided. Furthermore, the mesh‐induced toughening effect, essentially related to the artificial crack tortuosity caused by the different orientations of the interelement cohesive interfaces, is numerically investigated by performing comparisons with an additional fracture model, newly introduced for the purpose of numerical validation. These comparisons are presented to assess the reliability and the numerical accuracy of the proposed fracture approach.  相似文献   

18.
19.
The present work studies a self‐similar high‐speed expanding crack of mode‐I in a ductile material with a modified cohesive zone model. Compared with existing Dugdale models for moving crack, the new features of the present model are that the normal stress parallel to crack faces is included in the yielding condition in the cohesive zone and traction force in the cohesive zone can be non‐uniform. For a ductile material defined by von Mises criterion without hardening, the present model confirms that the normal stress parallel to crack face increases with increasing crack speed and can be even larger than the normal traction in the cohesive zone, which justifies the necessity of including the normal stress parallel to the crack faces in the yielding condition at high crack speed. In addition, strain hardening effect is examined based on a non‐uniform traction distribution in the cohesive zone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号