首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚合物/过渡金属氧化物纳米复合材料是近年来引人注目的一种新型功能性材料.介绍了这类材料的种类和制备方法,综述了聚合物/过渡金属氧化物的电致变色性能,探讨了聚合物/过渡金属氧化物的电致变色机理.  相似文献   

2.
综述了近年来高分子纳米复合气敏材料的研究进展,主要介绍了聚合物/碳纳米管、聚合物/金属氧化物和碳纳米管/金属或金属氧化物3类气敏材料的研究结果,指出今后研究的重点并对其研究前景作出了展望。  相似文献   

3.
正在有机太阳能电池中常用的溶液法界面材料为金属氧化物纳米材料和聚合物/小分子类有机界面层材料。这两类界面材料在实际应用中都存在着优缺点,比如金属氧化物纳米材料表面缺陷多,容易聚集;有机类界面材料厚度控制严格,且最有优厚度在10nm以内,不适合于印刷法制备。针对这些问题,中科院苏州纳米技术与纳米仿生研究所骆群副研究员和马昌期研究员开发了基于金属氧化物纳米颗粒和聚合物的纳米复合界面材料,系统研究了空穴传输型以及电子传输型复合材料的结构组成、物化特性、光电性质  相似文献   

4.
静电纺丝法是在强电场作用下将聚合物溶液或熔体转化为微、纳米结构材料的一种简单有效的方法。通过共混或与传统的溶胶凝胶法相结合,制备了实心、中空、多孔等多种纳米结构金属氧化物。系统地阐述了近年来利用静电纺丝法制备纳米结构金属氧化物的研究进展。  相似文献   

5.
静电纺丝法是在强电场作用下将聚合物溶液或熔体转化为微、纳米结构材料的一种简单有效的方法。通过共混或与传统的溶胶-凝胶法相结合,制备了实心、中空、多孔等多种纳米结构金属氧化物。系统地阐述了近年来利用静电纺丝法制备纳米结构金属氧化物的研究进展。  相似文献   

6.
方鲲  路阳  王凤平  邱宏 《材料导报》2006,20(Z1):102-105
半导体量子点/聚合物纳米复合材料是在分子尺度上形成的先进光电功能材料,其综合了半导体和聚合物材料的各自优点,并呈现出独特的电学、光学和光电子学等特性.根据聚合物中掺杂纳米半导体量子点材料的种类不同,对半导体量子点/聚合物纳米复合材料的制备、分类、器件结构与特性和研究进展进行了概要评述,并展望了其发展趋势.  相似文献   

7.
从两个方面对膨胀石墨纳米复合材料的制备方法、材料特性与应用领域进行综述:一是膨胀石墨作为添加剂复合到聚合物材料中,这种方法通常用于改良聚合物材料的机械、导电特性,以获得优良的聚合物材料;二是以膨胀石墨为主体,金属氧化物和晶体材料插入膨胀石墨空隙或片层间,这类材料通常用于润滑剂、光催化剂与电磁波屏蔽等方面。  相似文献   

8.
反相微乳技术在纳米粒子制备中的应用   总被引:1,自引:0,他引:1  
综述了反相微乳液的组成特点以及利用反相微乳液技术制备纳米微粒材料的基本方法;对当前利用反相微乳技术制备金属、金属氧化物、有机聚合物等各种纳米颗粒材料的研究现状进行了讨论,并对反相微乳液技术制备纳米粒子的各种影响因素进行了归纳总结.  相似文献   

9.
聚合物-过渡金属氧化物纳米复合阴极材料的研究进展   总被引:1,自引:1,他引:0  
聚合物-过渡金属氧化物纳米复合阴极材料在锂二次电池中是一类具有广阔应用前景的新型材料,本文综述了这类材料的制备方法和性能特征,分析了其导电机理,探讨了该研究领域的前沿问题。  相似文献   

10.
李战  钱俊 《包装学报》2018,10(4):78-87
石墨烯基纳米复合材料是制备超级电容器电极的重要原料之一,也是当下的研究热点。首先介绍了石墨烯/导电聚合物、石墨烯/金属氧化物两类二元纳米复合材料的特点及其制备方法;再介绍了三种不同结构类型的石墨烯/导电聚合物/金属氧化物三元纳米复合材料,并通过分析其结构特点,说明其优势与不足;最后简要介绍了石墨烯与金属硫化物、贵金属粒子以及其他碳材料复合的研究现状。通过分析可知,目前石墨烯基纳米复合材料仍存在较多不足之处,寻求快速、绿色、经济的方法制备能有效提高超级电容器电化学性能的石墨烯基纳米复合材料,将是未来的发展方向。  相似文献   

11.
传统的陶瓷膜(金属氧化物、金属碳化物以及金属氮化物)通常被认为是硬质材料。然而,许多证据表明,陶瓷膜的软和硬取决于原子和分子级键合相互作用以及微观结构。当陶瓷膜变得极薄时,比如陶瓷纳米膜,它们实际上为软物质。本文中,作者讨论了影响材料在不同尺度范围内的软硬性的几种可能因素,同时综述了作者及其他研究者的近期工作,这些工作提供了有关金属氧化物纳米膜和无机层状材料是软物质的证据。  相似文献   

12.
综述了近年来国内外纳米填料填充聚合物/纤维复合材料的多尺度结构及制备方法,讨论了纳米填料与纤维对复合材料性能的影响。纳米填料填充到聚合物/纤维复合材料中,可以较大地提高材料力学强度、耐腐蚀性、阻燃性、导热性等各种性能。该领域的研究为聚合物/纤维复合材料的功能化提供了有效途径。  相似文献   

13.
着重介绍用分子设计制备无机—有机纳米杂化材料的新方法及其结构、性能演变规律和功能化的工作。特别介绍关于纳米晶—聚合物杂化材料、纳米二氧化硅—聚合物纳米复合材料及其有机—无机聚合物表面结构与性能关系规律。如通过对纳米无机材料功能化修饰,使其含有与聚合物共聚的官能团,实现了与聚氨酯、硅橡胶、环氧树脂的分子组装,形成了无机—有机的互穿网络式嵌断共聚物,大大提高了聚氨酯、硅橡胶和环氧树脂的力学性能和热稳定性能。该聚氨酯杂化材料的拉伸强度和伸长率比未改性前均提高了2倍以上。通过原位聚合、聚合物刷、从表面接枝技术制备出高性能材料。探讨用催化链转移聚合等聚合方法实现新颖有机—无机纳米杂化材料的制备及其表面构筑。通过无机材料的表面设计和表面处理控制无机/聚合物复合材料的界面结构和行为,得到了多种性能优良的多元多尺度复合材料。提高纳米杂化复合高分子材料的加工性能,探索其特异的光电等特异性能。  相似文献   

14.
从过渡金属氧化物负极材料的循环稳定性、倍率性能以及首次库仑效率出发,重点讨论了制备特殊形貌纳米结构材料、特殊纳米结构膜以及纳米复合材料等改性方法对过渡金属氧化物电化学性能的影响,揭示了当前过渡金属氧化物负极材料的研究现状和亟待解决的问题,并展望了今后的发展方向。  相似文献   

15.
黄明福 《材料工程》2006,(Z1):433-437
聚合物和无机物在纳米尺度上相复合,将使各自的优势得到最充分的体现,聚合物/粘土纳米复合材料的研究已成为高分子材料科学领域的前沿,显示出重要的科学意义和良好的应用前景.本文从制备方法、插层剂的选择、PCN结构、插层理论、性能和应用等方面综述了近年来聚合物/粘土纳米复合材料的研究进展,并对其制备方法提出展望.  相似文献   

16.
王赫  王洪杰  王闻宇  金欣  林童 《材料导报》2018,32(5):730-734, 748
超级电容器是一种介于电池和传统物理电容器之间的新型环保储能器件,近年来得到了研究者的广泛关注。电极材料是超级电容器的核心部分,因此具有更高的研究价值。聚丙烯腈基碳纳米纤维因具有良好的静电纺丝性、较高的碳化产率、优异的纳米结构、超高的比表面积以及优良的导电性和稳定性,已经成为超级电容器电极材料的研究热点。本文主要介绍了聚丙烯腈基交联结构和多孔结构碳纳米纤维电极材料,元素掺杂电极材料以及与碳材料、导电聚合物、金属氧化物复合的电极材料,并对聚丙烯腈基碳纳米纤维电极材料未来的研究方向进行了展望。  相似文献   

17.
随着纳米技术的发展,纳米尺度聚合物材料的应用变得越来越普及,纳米尺度受限体系中聚合物分子链的扩散行为受到人们的广泛关注。由于受限效应,聚合物分子链的运动行为偏离本体,出现尺寸依赖性。研究受限体系中聚合物的扩散行为,对受限聚合物的结构设计及实际应用有十分重要的意义。文中从聚合物扩散基本理论出发,综述了近30年来聚合物分子链在不同维度受限体系中扩散行为的研究进展,介绍了不同受限状态下聚合物分子链扩散的物理机制、影响因素以及相关的理论模型,并对该领域进行了总结与展望。  相似文献   

18.
非对称型超级电容器结合了双电层电容器和法拉第准电容器的优点,具备高能量密度和功率密度、循环寿命长等特性,成为近年来超级电容器领域的研究热点。非对称型超级电容器电极材料包括碳材料/过渡金属氧化物体系、碳材料/导电聚合物体系和金属氧化物/导电聚合物体系,综述了非对称型超级电容器电极材料的类型及研究进展。  相似文献   

19.
细菌纤维素(Bacterial Cellulose, BC)是由微生物发酵获得的具有纳米尺寸的聚合物生物材料, 具有比表面积大、机械强度高、持水能力强、化学稳定性好及环境友好等特质, 可用于制备三维纳米碳材料的前驱体或支撑其他功能材料的柔性骨架。本文介绍了基于BC制备的各种碳纳米纤维(Carbon Nanofiber, CNF)及其复合材料, 包括掺杂CNF、CNF/金属氧化物、CNF/导电聚合物等材料。描述了这些材料在超级电容器中的应用, 关注BC用于可弯曲电极的设计和制备; 进一步阐述了当前BC应用于能源存储领域所面临的挑战和机遇, 并对其未来发展包括在高性能二次电池方面的应用等进行了展望。  相似文献   

20.
介绍了电化学电容器的工作原理,着重阐述了纳米多孔碳材料的电荷存储机制,指出碳材料的比容量与其比表面积并非线性相关,碳材料比表面积的实际利用率取决于碳孔径大小和电解质溶液离子粒径的关联度。综述了电化学电容器各类电极材料的研究进展,如多孔碳、碳纳米管、石墨烯、过渡金属氧化物以及导电聚合物,并展望了电化学电容器的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号