首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intensity and spectral distribution of light scattered by K2O-SiO2 glasses (K2O content up to 40 mol%) were measured. The transverse and longitudinal sound-wave velocities and the photoelastic constants were evaluated from the results. The total intensity of the scattering (and therefore the attenuation caused by it) exhibited a minimum at a concentration of ∼25 mol% K2O. For this composition the attenuation is ∼2/2 of that in pure SiO2. This behavior results from the existence of anomalously small concentration fluctuations in the melt of K2O·3SiO2 glass. A qualitative explanation of this result, involving low-temperature immiscibility regions, is presented.  相似文献   

2.
The density fluctuations contributing to light scattering in a glass are governed by the flctive temperature of the glass and the equilibrium compressibility of the melt. Using ultrasonic velocity data for K2O–SiO2 melts, these compressibilities were evaluated, and the magnitude of the density fluctuations were calculated. In this system, the mean–square amplitude of the fluctuations reaches a minimum value (about half that of pure SiO2) for a composition of ∼20 mol% K2O. By extrapolating the equilibrium compressibilities to zero K2O content, the density fluctuations can be calculated for pure SiO2 glass; this calculation agrees well with the result obtained from light–scattering measurements.  相似文献   

3.
The Rayleigh scattering of the mixed-alkali glass system K2O–Na2O–MgO–SiO2 (KNMS) was investigated, both experimentally and theoretically. The lowest Rayleigh scattering coefficient (38% of that for pure SiO2 glass) was obtained when the glass composition was 22K2O–8Na2O–10MgO–60SiO2 (in mol%). These values are equal to or less than the minimum values reported for the ternary sodium silicate glass Na2O–MgO–SiO2. The Rayleigh scattering caused by concentration fluctuation was believed to have been reduced greatly in this KNMS glass, because the mobility of the alkali-metal ions was reduced by the mixed-alkali effect.  相似文献   

4.
Available thermodynamic and phase diagram data have been evaluated for all phases in the Na2O-SiO2 and K2O-SiO2 systems at 1 bar pressure from 298 K to above the liq-uidus temperatures. All reliable thermodynamic and phase diagram data have been simultaneously optimized in order to obtain one set of model equations for the Gibbs energies of all phases as functions of temperature and composition. The thermodynamic properties and phase diagrams calculated from these parameters are self-consistent. The modified quasi-chemical model was used to represent the Gibbs energies of the molten slag phases.  相似文献   

5.
The effect of niobia on the dielectric properties of glasses in the system Nb2O5–Na2O–SiO2 has been studied from 100 to 1010 cps. The dielectric constant is high even at frequencies up to 1010 cps. The Nb5+ ion, with its small ionic radius and high charge, reinforces the network and raises the dielectric constant.  相似文献   

6.
A furnace for use in conjunction with the X-ray spectrometer was developed which was capable of heating small powdered specimens in air to temperatures as high as 1850°C. This furnace was also used for the heating and quenching of specimens in air from temperatures as high as 1850°C. An area of two liquids coexisting between 20 and 93 weight % TiO2 above 1765°± 10°C. was found to exist in the system TiO2–SiO2, which is in substantial agreement with the previous work of other investigators. The area of immiscibility in the system TiO2–SiO2 was found to extend well into the system TiO2–ZrO2–SiO2. The two liquids were found to coexist over a major portion of the TiO2 (rutile) primary-phase area with TiO2 (rutile) being the primary crystal beneath both liquids. The temperature of two-liquid formation in the ternary was found to fall about 80°C. with the first additions of ZrO2 up to 3%. With larger amounts of ZrO2 the change in the temperature of the boundary of the two-liquid area was so slight as to be within the limits of error of the temperature measurement. Primary-phase fields for TiO2 (rutile), tetragonal ZrO2, and ZrTiO4 were found to exist in the system TiO2–ZrO2–SiO2. SiO2 as high cristobalite is known to exist in the system TiO2–ZrO2–SiO2.  相似文献   

7.
Zirconolite (CaZrTi2O7) is a mineral that has a high containment capacity for actinides and lanthanides and is considered to be a good candidate for the immobilization of radioactive wastes. The glass–ceramic technique seems to be a very suitable and convenient method to produce zirconolite crystals by precipitating them in a specific glass matrix. In this study, development of a new zirconolite-based glass–ceramic belonging to SiO2–PbO–CaO–ZrO2–TiO2–(B2O3–K2O) system was investigated. The presence of PbO, together with B2O3 and K2O, allowed the preparation of a X-ray diffraction (XRD) amorphous glass with a relatively high concentration of ZrO2 and TiO2, which was successfully converted to a glass–ceramic containing 34 wt% of zirconolite after heating at 770°C for 4 h. Differential thermal analysis, XRD, scanning electron microscope, and energy dispersive X-ray spectroscopy were used to determine the crystallization conditions, identify the crystallized phases, determine their compositions and quantities and observe and analyze the microstructures. The zirconolite crystals showed a platelet morphology with a monoclinic structure characterized by a =1.246 nm, b =0.7193 nm, c =1.128 nm, and β=100.508°.  相似文献   

8.
The phase relations of the systems ZrO2–TiO2 and ZrO2–TiO2–SiO2 were investigated. X-ray diffraction techniques served as the principal means of analysis. The binary system ZrO2–TiO2 was found to be one of partial solid solutions with no intermediate compounds. A eutectic point was found to exist at 50 to 55 weight % ZrO2 and 1600°C. A preliminary investigation of the ternary system ZrO2–TiO2–SiO2, although not extensive, resulted in a better understanding of this system, with a fairly accurate location of some of its boundary lines. A eutectic point was located at 2% ZrO2, 10% TiO2, and 88% SiO2 at approximately 1500°C.  相似文献   

9.
The monolithic glass-forming region of the low phonon and low softening point antimony glasses containing high Sb2O3 (40–75 mol%) in the novel quaternary K2O–B2O3–Sb2O3–ZnO system has been found with the help of X-ray diffraction (XRD) analysis. The structure of a series of glasses with the general composition of (mol%) 15K2O–15B2O3–(70− x )Sb2O3– x ZnO (where x =5–25) has been evaluated by infrared reflection spectral (FT-IRRS) analyses. All the glasses are found to possess a low phonon energy of around 600 cm−1, as revealed by FT-IRRS. Their softening point ( T s), glass transition temperature ( T g), and coefficient of thermal expansion (CTE) have been found to vary in the ranges of 351°–379°C, 252°–273°C, and 195–218 × 10−7 K−1, respectively. These properties are found to be controlled by their fundamental property, like the covalent character of the glasses, which is found to increase with an increase in Sb2O3 content. In addition, the devitrified glasses have been characterized by XRD and field emission scanning electron microscopy, which manifests the presence of nanozinc antimony oxide crystals with sizes of 21–43 nm. The exhibited properties have revealed that they are a new class of versatile materials.  相似文献   

10.
The radial distribution functions of ZnO–K2O–SiO2 glasses with 7 and 10 wt% ZnO are compared with that of the corresponding K2O–SiO2 matrix leading to "difference distribution curves'representative of the zinc structural arrangement. Analysis of the curves indicates that Zn2+ ions are prevalent (65% to 80%) in the glasses in tetracoordinated form.  相似文献   

11.
Ceramic photonic crystals with diamond structure were fabricated using stereolithography and successive sintering. The green body of an epoxy resin incorporating 10 vol% TiO2–SiO2 was formed by stereolithography and then heated in air at 1100°–1400°C for 2 h. The sintered products maintained the diamond structure with a linear shrinkage ratio of about 57% and a porosity of 38%. The ceramic photonic crystal with eight unit cells showed a photonic band gap at the center frequency of 23.5 GHz. This fabrication method of three-dimensional (3D) ceramic photonic crystals is applicable to other 3D structural ceramics and does not require any molding techniques.  相似文献   

12.
Interfacial and powder reactions between CaTiO3 and 90PbO–10B2O3 and 75PbO–25SiO2 binary glasses were studied. The reaction has been analyzed as the effect of B2O3 and SiO2 additions on the interaction between CaTiO3 and PbO, and discussed from thermodynamic and kinetic points of view. For a fixed CaTiO3/PbO ratio2 the product perovskite phase became enriched with lead as the amount of additives increased, which is more pronounced with B2O3 addition. The reaction of CaTiO3 with the lead–boron glass was controlled by a dissolution-precipitation mechanism, and that with the lead-silica glass by a diffusion mechanism.  相似文献   

13.
Crystallization of the poorly durable Na2MoO4 phase able to incorporate radioactive cesium must be avoided in SiO2–Al2O3–B2O3–Na2O–CaO glasses developed for the immobilization of Mo-rich nuclear wastes. Increasing amounts of B2O3 and MoO3 were added to a SiO2–Na2O–CaO glass, and crystallization tendency was studied. Na2MoO4 crystallization tendency decreased with the increase of B2O3 concentration whereas the tendency of CaMoO4 to crystallize increased due to preferential charge compensation of BO4 entities by Na+ ions. 29Si MAS NMR showed that molybdenum acts as a reticulating agent in glass structure. Trivalent actinides surrogate (Nd3+) were shown to enter into CaMoO4 crystals formed in glasses.  相似文献   

14.
The acid-base equilibria in the liquid silicates in the system PbO–SiO2 are discussed, Data reported by Richardson and Webb, wherein the PbO activity is determined over a composition range of 0 to 60 mole % SiO2, are used for comparison with activities computed from structural models with consideration of the acid-base equilibria. The results suggest that the liquid silicates in the system PbO–SiO2, for the composition and temperature ranges studied, are constituted of a relatively low number of anionic species and that these anions are of a relatively small size (i.e., O2–, SiO4–, (SiO3)36−. and (SiO2.5)66−).  相似文献   

15.
The devitrification kinetics and mechanism of a low-dielectric, low-temperature, cofirable K2O–CaO–SrO–BaO–B2O3–SiO2 glass-ceramic have been investigated. Crystalline phases including cristobalite (SiO2) and pseudowollastonite ((Ca,Ba,Sr) SiO3) are formed during firing. Activation energy analysis shows that the nucleation of the crystalline phases is controlled by phase separation of the glass. The crystallization kinetics of both cristobalite and pseudowollastonite obey Avrami-like behavior, and the results show an apparent activation energy close to that of the diffusion of alkaline and alkali ions in the glass, suggesting that diffusion is rate limiting. The above conclusion is further supported by analysis of measured growth rates.  相似文献   

16.
Differences in the Raman spectra of various heat-treated TiO2· SiO2 glasses could be related to their thermal and chemical histories. For instance, while rutile could be detected in batch-prepared glasses heated at 1100°C, only α-cristobalite could be detected in heat-treated devitrified flame-prepared glasses with comparative TiO2-concentrations. Thermal expansion coefficients increased for batch-prepared glasses upon heat treatment due to exsolution of rutile from the glasses. Earlier work had noted similar behavior at lower temperatures due to exsolution of anatase.  相似文献   

17.
Nucleation and crystallization kinetics of fresnoite (Ba2TiSi2O8) crystals in BaO–TiO2–SiO2 glasses have been explored for dielectric applications. The volume fractions crystallized at different temperatures and times were tracked by XRD analysis. The activation energy of crystallization was estimated from DTA results to be about 528 kJ/mol, which is consistent with the value obtained by XRD results. The Avrami parameter values calculated at different temperatures from DTA results were found to be between 3.2 and 3.9, indicating that the growth is three dimensional and the mechanism of growth is interface-controlled. Additionally, because of compositional similarities, the dielectric contrast between the glass (ɛr∼15) and the resulting glass–ceramic (ɛr∼18) was minimal.  相似文献   

18.
Er3+-doped sodium lanthanum aluminosilicate glasses with compositions of (90− x )(0.7SiO2·0.3Al2O3)· x Na2O·8.2La2O3· 0.6Er2O3·0.2Yb2O3·1Sb2O3 (in mol%) ( x = 12, 20, 24, 40, 60 mol%) were prepared and their spectroscopic properties were investigated. Judd–Ofelt analysis was used to calculate spectroscopic properties of all glasses. The Judd–Ofelt intensity parameter Ω t ( t = 2, 4, 6) decreases with increasing Na2O. Ω2 decreases rapidly with increasing Na2O while Ω4 and Ω6 decrease slowly. Both the fluorescent lifetime and the radiative transition rate increase with increasing Na2O. Fluorescence spectra of the 4 I 13/2 to 4 I 15/2 transition have been measured and the change with Na2O content is discussed. It is found that the full width at half-maximum decreases with increasing Na2O.  相似文献   

19.
A series of La2O3–HfO2–SiO2 glasses, approximately along the join 0.73SiO2–0.27( x HfO2–(1− x )La2O3), 0< x <0.3), was prepared using containerless processing techniques (aerodynamic levitation combined with laser heating in oxygen). The enthalpy of formation and enthalpy of vitrification at 25°C were obtained from drop solution calorimetry of these glasses and appropriate crystalline compounds in a molten lead borate (2PbO–B2O3) solvent at 702°C. The enthalpy of formation from crystalline oxides was exothermic and became less exothermic with increasing HfO2 content. Heat contents were measured by transposed temperature drop calorimetry and depended linearly on the HfO2 content. Differential scanning calorimetry showed that both the onset glass transition and the onset crystallization temperature of these glasses increased with increasing HfO2 content. Upon slow cooling in air, the glasses crystallized to a mixture of baddeleyite, cristobalite, lanthanum disilicate, and hafnon.  相似文献   

20.
Sintering and crystallization of a 23.12 mol% Li2O, 11.10 mol% ZrO2, 65.78 mol% SiO2 glass powder was investigated. By means of thermal shrinkage measurements, sintering was found to start at about 650°C and completed in a very short temperature interval (Δ T similar/congruent 100°C) in less than 30 min. Crystallization took place just after completion of sintering and was almost complete at about 900°C in 20 min. Secondary porosity prevailed over the primary porosity during the crystallization stage. The glass powder compacts first crystallized into lithium metasilicate (Li2SiO3), which transformed into lithium disilicate (Li2Si2O5), zircon (ZrSiO4), and tridymite (SiO2) after the crystallization process was essentially complete. The microstructure was characterized by fine crystals uniformly distributed and arbitrarily oriented throughout the residual glass phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号