首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology and thermal properties of isothermal crystallized binary blends of poly(propylene-co-ethylene) copolymer (PP-co-PE) and isotactic polypropylene (iPP) with low molecular weight polyethylene (PE) were studied with differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), polarized optical microscopy (POM) and wide-angle X-ray diffraction (WAXD). In PP-co-PE/PE binary blends, however, the connected PE acted as a phase separating agent to promote phase separation for PP-co-PE/PE binary blends during crystallization. Therefore, the thermal properties of PP-co-PE/PE presented double melting peaks of PE and a single melting temperature of PP during melting trace; on the other hand, at cooling trace, the connected PE promoted crystallization rate because of enhanced segmental mobility of PP-co-PE during crystallization. At isothermal crystallization temperature between the melting points of iPP and PE, the binary blend was a crystalline/amorphous system resulting in persistent remarkable molten PE separated domains in the broken iPP spherulite. And then, when temperature was quenched to room temperature, the melted PE separated domains were crystallized that presented a crystalline/crystalline system and formed the intra-spherulite segregation morphology: these PE separated domains/droplet crystals contained mixed diluent PE with connected PE components. On the other hand, in the iPP/PE binary blends, the thermal properties showed only single melting peaks for both PE and iPP. Moreover, the glass transition temperature of iPP shifted to lower temperature with increasing PE content, implying that the diluent PE molecules were miscible with iPP to form two interfibrillar segregation morphologies: iPP-rich and PE-rich spherulites. In this work, therefore, we considered that the connected PE in PP-co-PE functioned as an effective phase separating agent for PP and diluent PE may be due to the miscibility between connected PE and diluent PE larger than that between PP and dispersed PE.  相似文献   

2.
Optical microscopy, differential scanning calorimetry, and small angle X‐ray scattering techniques were used to study the influence of the crystallization conditions on morphology and thermal behavior of samples of binary blends constituted of isotactic polypropylene (iPP) and a novel graft copolymer of unsaturated propylene with styrene (uPP‐g‐PS) isothermally crystallized from melt, at relatively low undercooling, in a range of crystallization temperatures of the iPP phase. It was shown that, irrespective of composition, no fall in the crystallinity index of the iPP phase was observed. Notwithstanding, spherulitic texture and thermal behavior of the iPP phase in the iPP/uPP‐g‐PS materials were strongly modified by the presence of copolymer. Surprisingly, iPP spherulites crystallized from the blends showed size and regularity higher than that exhibited by plain iPP spherulites. Moreover, the amount of amorphous material located in the interspherulitic amorphous regions decreased with increasing crystallization temperature, and for a given crystallization temperature, with increasing uPP‐g‐PS content. Also, relevant thermodynamic parameters, related to the crystallization process of the iPP phase from iPP/uPP‐g‐PS melts, were found, composition dependent. The equilibrium melting temperature and the surface free energy of folding of the iPP lamellar crystals grown in the presence of uPP‐g‐PS content up to 5% (wt/wt) were, in fact, respectively slightly lower and higher than that found for the lamellar crystals of plain iPP. By further increase of the copolymer content, both the equilibrium melting temperature and surface free energy of folding values were, on the contrary, depressed dramatically. The obtained results were accounted for by assuming that the iPP crystallization process from iPP/uPP‐g‐PS melts could occur through molecular fractionation inducing a combination of morphological and thermodynamic effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2286–2298, 2001  相似文献   

3.
The phase morphology and structure of thermoplastic elastomers obtained from isotactic polypropylene (iPP) and ethylene—propylene random copolymer (EPR) blends by means of the dynamic curing of EPR rubbery component carried out during its melt mixing with iPP in a Banbury mixer at 180°C were investigated. Samples obtained by compression molding and by using isothermal crystallization conditions of the iPP phase were analyzed by means of differential scanning calorimetry, of optical, scanning, and transmission electron microscopy, and of wide-angle and small-angle X-ray diffraction. The influence of cooling below the melting point and of EPR molecular structure on the kinetic and thermodynamic parameters related to crystallization process of the iPP phase was also studied. It was found that the process of dynamic curing of the EPR component dramatically affects the development of the phase morphology and structure in the material. As a matter of fact, the blend containing the uncured EPR is characterized by the presence of iPP domains randomly distributed in the EPR rubbery matrix, whereas in the blend containing the cured EPR the iPP phase becomes the continuous phase crystallizing in a structure that resembles a cobweb tending to surround the EPR cured particles; moreover such an iPP cobweb appears to be contituted by row structures of stacked lamellae. It was found that the addition of EPR phase interferes dramatically with the crystallization process of the iPP, thus inducing drastic modification in its intrinsic morphology (size, neatness, regularity of spherulites, inner structure of spherulites, etc.). Such interference was found to be comparatively stronger when the iPP phase crystallizes in presence of cured EPR. The elastic behavior of the thermoplastic elastomer material was accounted for by applying the “leaf spring model” to the morphology and structure of the iPP phase crystallized in presence of cured EPR. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
An experimental study was carried out to investigate the kinetic, morphological and thermodynamic properties of thin films of isotactic polypropylene (iPP) blended with several elastomers such as ethylene-propylene-diene terpolymer (EPDM) and three samples of polyisobutylene (PIB) with different molecular masses. The addition of the rubber to iPP causes drastic modifications in the morphology, nucleation density, spherulite growth rate and thermal behaviour of iPP. Such modifications depend strongly on the chemical and molecular mass of the added elastomer and on the composition of the blend. All the elastomers studied seem to act as nucleating agents for the iPP spherulites. The addition of PIB to iPP results in a reduction of the spherulite growth rate G, whereas the addition of EPDM does not seem to have a great influence. For the iPP/PIBHM iPP/PIBMM and iPP/EPDM blends a depression of the equilibrium melting temperature Tm, with respect to that of pure iPP, is observed. This depression is increased for the blend containing 20% rubber. This effect is probably related to phenomena of partial miscibility in the melt and to the coexistence of processes such as molecular fractionation and preferential dissolution of the more defective molecules.  相似文献   

5.
The structure, phase structure, morphology, crystallization and melting behavior of isotactic polypropylene (iPP) blended with a master batch (MB), formed by high density polyethylene and hydrogenated hydrocarbon resin (iPP/MB), have been in details investigated by using X-ray diffraction, optical microscopy and differential scanning calorimetry. It was found that the structure and morphology depend on crystallization conditions. A new family of α spherulites of iPP (type I spherulites) can be activated using appropriate crystallization conditions. Nucleation of these spherulites has been explained by using the approach of nucleus migration in polymer blends. Type I spherulites present specific morphological, kinetic and thermal behaviors. In particular it was found that the growth rate of type I spherulites, at a given Tc, is higher than the growth rate of spherulites grown from plain iPP.  相似文献   

6.
The effect of propylene–ethylene copolymers (PEc) with different ethylene‐unit contents on melting and crystallization behaviors of isotactic‐polypropylene (iPP) were investigated by differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The results show that the addition of PEc decreases significantly crystallization temperature (Tc) of iPP, but slightly affects melting temperature (Tm). With increasing the ethylene‐unit content of the propylene–ethylene copolymers, the decrease in crystallization temperature of iPP is smaller. The PLM results show that the spherulite growth rate decreases with increasing crystallization temperature for iPP and iPP/PEc blends. The higher the ethylene‐unit content of the copolymers is, the lower the spherulite growth rate (G) of iPP/PEc blends is. The influence of the PEc on nucleation rate constant (Kg) and fold surface energy (σe) of iPP was examined by nucleation theory of Hoffman and Lauritzen. The results show that both Kg and σe of iPP/PE20(80/20) and iPP/PE23(80/20) blends are higher than those of iPP, demonstrating that the overall crystallization rate of iPP/PEc blends decreased as compared to that of iPP, resulting from the decrease of the nucleation rate and the spherulite growth rate of iPP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Calcium salts of suberic (Ca‐Sub) and pimelic (Ca‐Pim) acids were synthesized and implemented as in different grades of isotactic polypropylene (iPP). Propylene homopolymer, as well as random and block copolymers containing these additives, crystallized iPP into pure or nearly pure β modification in the isothermal and nonisothermal crystallization experiments. Recently, Ca‐Sub proved to be the most effective β‐nucleating agent of iPP. The Ca‐Sub nucleating agent widens the upper crystallization temperature range of pure β‐iPP formation up to 140°C. In this study the effect of the these additives on the crystallization, melting characteristics, and structure of the PP were studied. The degree of crystallinity of β‐iPP was markedly higher than that of α‐iPP. A widening in the melting peak of the samples crystallized in a high temperature range was first observed and discussed in regard to literature results of the same phenomenon for α‐iPP. The morphology of the β‐iPP samples was revealed by scanning electron microscopy. Independent of the type of polymer or nucleating agent, hedritic structures were found in the early stages of growth of the β‐spherulites. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2357–2368, 1999  相似文献   

8.
Primary nucleation of spherulites in blends of isotactic polypropylene (iPP) with ethylene-propylene random copolymer (EPM) has been investigated using optical microscopy. The number of spherulites generally increases with increasing EPM content. It is shown that this increase is caused by migration of heterogeneous nuclei across interface boundaries from EPM to iPP during melt-mixing. The migration was observed in the blends with the nucleating agent initially added to EPM before blending with iPP. It is suggested that the interfacial free energy difference between nuclei and the molten components of the blend is responsible for the migration of nuclei. It is also shown that self-seeded nucleation becomes damped in the blends due to partial solubility of the components and that the degradation of the blends during melt-annealing depresses the primary nucleation.  相似文献   

9.
Samples of propylene-ethylene (EP) and propylene-(1-butene) (BP) random copolymers with various comonomer content (2-3.1 wt% ethylene, 9.9 wt% 1-butene), were melt-mixed in Brabender internal mixer at various compositions (25/75, 50/50, 75/25). Films of copolymers and blends, as well as of a homopolymer sample (iPP), obtained by compression moulding and with different thermal history were characterized by optical and scanning electron microscopy (OM, SEM), small-angle light scattering (SALS), small- and wide angle X-ray scattering (SAXS, WAXS) and differential scanning calorimetry (DSC). It was found that all copolymers and blends studied crystallized exclusively in monoclinic α-modification forming spherulitic structure in a very broad undercooling range. The average size of spherulites is smaller in the copolymer containing 1-butene as compared to those containing ethylene or to iPP homopolymer, due to enhanced heterogeneous nucleation in BP copolymer. SEM microscopic observations demonstrated that EP and BP copolymers were miscible at all examined compositions and form homogeneous blends. Structural and morphological analysis indicated that the comonomer units are incorporated into growing crystallites in both EP and BP copolymers, while the non-crystallizing material is rejected out of the crystallites. For small concentrations of comonomer some of non-crystallizing species are pushed ahead of the front of growing spherulite into interspherulitic regions. For higher comonomer concentration these species are mostly trapped in intraspherulitic regions. Melting behavior of copolymers reflects the incorporation of comonomer into crystalline phase: melting temperature and crystallinity degree decrease in copolymers and blends as compared to plain iPP.  相似文献   

10.
Isothermal radial growth rates (G) of isotactic polypropylene (iPP) spherulites in immiscible blends with a polyethylene based ionomer (1) partially neutralized with Zn+2, (2) completely acidified, and (3) completely esterified have been determined at crystallization temperatures between 118 and 124°C by time-lapse photomicroscopy. In these blends iPP spherulites grow with increased G as compared to that of pure iPP. This behavior is attributed to increases in the rate of transport, due to limited miscibility induced by mechanical mixing. However, subtle differences in the melting behavior suggest that changes in Spherulite morphology may also be a contributing factor.  相似文献   

11.
The influence of a natural terpene resin, poly(α-pinene) (PαP), on the nonisothermal crystallization process of isotactic polypropylene (iPP) was investigated. The solidification process strongly depends on cooling rate, composition, and miscibility of the system. For the blends containing PαP up to 30 wt %, the overall nonisothermal crystallization rate is depressed with respect to plain iPP. This is probably the result of the diluting effect of the polyterpene because the two components are miscible. The 50/50 blend presents, instead, two amorphous phases: an iPP-rich phase and a PαP-rich phase. For this composition, solidification starts at temperatures higher than those for plain iPP and blends with lower PαP content, given that the diluting effect of PαP in the iPP-rich phase is counterweighted by an increased number of nuclei that originate from the polyterpene-rich phase domains. PαP also influences the morphology of iPP spherulites, which are spherical in plain iPP and become more irregular with increasing PαP content. The number and dimension of iPP spherulites depend on blend composition and miscibility of the components. Moreover, the nonisothermal crystallization kinetics of iPP/PαP blends was analyzed with the Ozawa equation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 358–367, 2001  相似文献   

12.
Two random commercial ethylene-propylene copolymers (EPM) with different ethylene content have been added to binary isotactic polypropylene (iPP)/high density polyethylene (HDPE) blends by melt mixing in a Brabender-like apparatus. Impact Izod tests and a morphological analysis on the fractured surfaces of broken specimens have been performed and discussed, in order to improve the deficiency in toughness of the binary HDPE/iPP mixtures. The results show that the impact performance of both homopolymers and HDPE/iPP binary blends is strongly improved by the addition of the EPM copolymers. Such an effect is related to the fact that the overall morphology, as well as the mechanism and mode of fracture, are greatly modified by the presence of such additives. The extent is dependent on factors such as the nature of the matrix (HDPE or iPP), the composition, and the chemical structure and/or the molecular mass of the added copolymer.  相似文献   

13.
Optical microscopy, differential scanning calorimetry, and small angle X‐ray scattering techniques were used to study the influence of crystallization conditions on the morphology and thermal behavior of samples of ternary blends constituted of isotactic polypropylene (iPP), atactic polymethylmethacrylate (aPMMA), and a novel graft copolymer of unsaturated propylene with methylmethacrylate (uPP‐g‐PMMA). The purpose was to assess the uPP‐g‐PMMA capability to act as compatibilizer for iPP/aPMMA materials. It was shown that the presence of uPP‐g‐PMMA copolymer affects the interfacial tension between the iPP and aPMMA phase in the melt state, the aPMMA particle size, and particle‐size distribution is modified. After complete crystallization of the iPP phase at relatively low undercooling, in a range of crystallization temperatures, the presence of the uPP‐g‐PMMA phase was found to modify both mode and state of dispersion of minor component and spherulitic texture and inner structure of spherulites fibrillae. The extent of the induced modifications was dependent on a combination of composition and undercooling. Also, relevant thermodynamic parameters of the iPP phase, such as the equilibrium melting temperature and the surface free energy of folding, were strongly affected by the presence of the uPP‐g‐PMMA phase, opposite effects being observed depending on the uPP‐g‐PMMA content. The observed melting temperature and surface free energy of folding values were accounted for by the growth of iPP lamellar crystals with different perfection, thickness, and surface disorder. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 143–158, 2001  相似文献   

14.
Morphology of low-density polyethylene (PE)/thermotropic hydroxyethyl cellulose acetate (HECA) blends, and the melting and crystallization behavior of PE in the blends were studied. The “sea island” morphology was observed in PE/HECA blends. The process of melting and crystallization of PE in blends was independent of the HECA fraction when the PE fraction was larger than 50 wt %. When the PE fraction is smaller than 20 wt %, however, multiple crystallization was observed in the low temperature region. HECA was incompatible with PE crystals in the blends, but partially compatible with the amorphous part of PE. HECA could exist between the PE lamellae in PE spherulites, and concentric ring morphology was observed in spherulites. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1285–1291, 1998  相似文献   

15.
The influence of the addition of two ethylene-propylene random copolymers (EPM) with different composition on the mechanical properties, thermal behavior and overall morphology of high density polyethylene (HDPE)/isotactic polypropylene (iPP) blends, was investigated on extruded samples. The experimental data showed that the morphology of binary HDPE/iPP blends is drastically modified by these additives and that the ultimate mechanical properties of these mixtures are greatly improved. A reasonable explanation of these results can be ascribed to the fact that these copolymers can act as “compatibilizing agents” in the amorphous regions of the two semicrystalline homopolymers. The extent of such effects is dependent on the chemical structure and/or on the molecular mass of the added copolymer as well as on the HDPE/iPP blend compositions.  相似文献   

16.
Huihui Li  Dujin Wang 《Polymer》2004,45(23):8059-8065
The supermolecular structures of iPP fiber/matrix composites as a function of crystallization temperature were studied by means of optical microscopy. The results show that, even though partial melting of the iPP fibers is in favor of initiating the β-iPP crystal growth, the interfacial morphology of iPP single-polymer composites induced by its own fiber depends strongly on the crystallization temperature. It was found that transcrystalline structures of negative radial βIII-iPP or banded βIV-iPP can be produced within the crystallization temperature range 105-137 °C, while transcrystallization zone of pure negative radial αII-iPP crystals is observed at higher crystallization temperature, e.g. 141 °C. On the other hand, the surrounding iPP spherulites grown from the bulk are composed of α-iPP in the whole crystallization temperature range. However, the optical character of the spherulites is controlled by the thermal condition.  相似文献   

17.
The crystallization kinetics and morphology development of pure isotactic polypropylene (iPP) homopolymer and iPP blended with atactic polypropylene (aPP) at different aPP contents and the isothermal crystallization temperatures were studied with differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscopy. The spherulitic morphologies of pure iPP and larger amounts of aPP for iPP blends showed the negative spherulite, whereas that of smaller amounts of aPP for the iPP blends showed a combination of positive and negative spherulites. This indicated that the morphology transition of the spherulite may have been due to changes the crystal forms of iPP in the iPP blends during crystallization. Therefore, with smaller amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends increased with increasing aPP and presented a lower degree of perfection of the γ form coexisting with the α form of iPP during crystallization. However, with larger amounts of aPP, the spherulitic density and overall crystallinity of the iPP blends decreased and reduced the γ‐form crystals with increasing aPP. These results indicate that the aPP molecules hindered the nucleation rate and promoted the molecular motion and growth rate of iPP with smaller amounts of aPP and hindered both the nucleation rate and growth rate of iPP with larger amounts of aPP during isothermal crystallization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1093–1104, 2007  相似文献   

18.
The morphology and mechanical properties of isotactic polypropylene (iPP) and poly(ethylene‐co‐methyl acrylate) (EMA) blends were investigated. Various EMA copolymers with different methyl acrylate (MA) comonomer content were used. iPP and EMA formed immiscible blends over the composition range studied. The crystallization and melting reflected that of the individual components and the crystallinity was not greatly affected. The size of the iPP crystals was larger in the blends than those of pure iPP, indicating that EMA may have reduced the nucleation density of the iPP; however, the growth rate of the iPP crystals was found to remain constant. The tensile elongation at break was greatly increased by the presence of EMA, although the modulus remained approximately constant until the EMA composition was greater than 20%. EMA with a 9.0% MA content provided the optimum effect on the mechanical properties of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 175–185, 2003  相似文献   

19.
The phase morphology and the influence of composition on the primary nucleation of isotactic polypropylene in isotactic polypropylene/isotactic poly(butene-1) (iPP/iPB) blends were investigated by electron and light microscopy and small-angle light scattering. It was found that iPP and iPB are miscible but the thermal treatment induces partial phase separation of components and the formation of iPP-rich and iPB-rich phases. The complete phase separation needs high temperatures and/or a long time of melt annealing. In samples crystallized isothermally at low undercooling the heterogeneous primary nucleation in blends is depressed as compared to plain iPP. In blends the less active heterogeneities lose their activity because of an increase of the energy barrier for critical size nucleus formation due to phase separation of blend components during crystallization. For the same reason the rate of homogeneous nucleation in blends decreases, as observed in samples crystallized at very high undercooling. At very high undercooling iPP and iPB are able to crystallize with similar rates, which results in the formation of a fraction of iPB spherulites in addition to iPP spherulites. Consequently the number of spherulites in the blend is larger than that in plain iPP, in spite of the decrease in the homogeneous nucleation rate of iPP in the blend. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
In this study, blends of metallocene short‐chain branched polyethylene (SCBPE) with low‐density polyethylene (LDPE), high‐density polyethylene (HDPE), polystyrene (PS), ethylene–propylene–diene monomer (EPDM), and isotactic polypropylene (iPP) were prepared in weight proportions of 80 and 20, respectively. The crystallization behaviors of these blends were studied with polarized light microscopy (PLM) and differential scanning calorimetry. PLM showed that SCBPE/LDPE, SCBPE/HDPE, and SCBPE/EPDM formed band spherulites whose band widths and sizes were both smaller than that of pure SCBPE. No spherulites were observed, but tiny crystallites were observed in the completely immiscible SCBPE/PS, and the crystallites in SCBPE/iPP became smaller; only irregular spherulites were seen. The crystallization kinetics and mechanical properties of SCBPE were greatly affected by the second polyolefin but in different way, depending on the phase behavior and the moduli of the second components. SCBPE may be phase‐miscible in the melt with LDPE, HDPE, and EPDM but phase‐separated during crystallization. A big change in the crystal morphology and crystallization kinetics existed in the SCBPE/iPP blend. The mechanical properties of the blends were also researched with dynamic mechanical analysis (DMA). DMA results showed that the tensile modulus of the blends had nothing to do with the phase behavior but only depended on the modulus of the second component. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1816–1823;2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号