首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crushing strengths of agglomerates made by tumbling cellulose acetate and cellulose acetate butyrate powders wetted by water-methanol solutions of various concentrations were measured. After normalization for the effects of variable pore saturation and porosity, agglomerate strength factors exhibited minima as methanol concentration was increased. These minima also corresponded approximately to maximum pore saturation by the wetting liquid. It is proposed that these experimental maxima and minima correspond to a condition under which surface tensions of the liquid and solid phases are just matched, so that maximum capillary suction and zero van der Waals attraction exist in the wetted particle systems. It is concluded that reliable solids surface tension data can thus be generated from compressive strength measurements on agglomerates of low energy particulate solids.  相似文献   

2.
The cohesion of cork agglomerates is determined by the strength of the adhesive joint established between the polymeric adhesive and the cork particles. The ability of adhesives to form good joints depends, among other factors, on the wetting of cork by the adhesives. The main objective of this research was to study the behaviour of adhesive drops deposited on cork substrates through measurements of contact angles and their time dependence. Several polyurethane prepolymers were tested to establish a correlation between the wetting characteristics and the chemical structure and physical properties of the adhesives. The effect of the morphology of cork on the interfacial properties was also investigated. The initial contact angles were related to the chemical nature of the adhesive. The kinetics of the wetting process were found to depend mainly on the viscosity of the adhesive.  相似文献   

3.
The aim of this study was to investigate the interfacial shear strength between ice and rubbers. Different rubber materials containing only a polymer and curing agent (peroxide) were tested with regard to surface wettability and interfacial shear strength. The effect of different grades and amounts of carbon black filler was also studied. The wettability was determined from contact angles, using water and diiodomethane as test liquids, measured on carefully cleaned and mirror smooth rubber sheets. The test showed that there is a correlation between ice adhesion and rubber substrate wettability. Below a water contact angle of 90°, the interfacial shear strength of ice decreases linearly with increasing contact angle. For contact angles above 90°, the interfacial shear strength of ice stays practically the same. The presence of high surface energy additives such as reinforcing carbon black (e.g. N220 ISAF) significantly increases the interfacial shear strength. The highly hydrophobic behaviour of different plant surface textures was also investigated regarding ice adhesion strength. The combination of a submicrometer textured surface and a hydrophobic surface characteristic showed an abrupt decrease in the adhesion force of a water droplet at measured macroscopic contact angles above approximately 150°. Despite this water repellency, the ice adhesion strength is not nil. However, it was among the lowest values experienced in the test.  相似文献   

4.
5.
The tensile strength of particle agglomerates is analyzed to indicate the effect of distributed loading through contact flattening during the diametral compression test. It is assumed that only the contact regions of the agglomerate are flattened and that the free boundary maintains its original position during loading. The increased packing density so produced is related to the total loading as a reaction force through an empirical relationship used to describe die compaction of powders. Agglomerate failure occurs when the maximum tensile stress caused by the platen loading exceeds the cohesive strength of the particle assemblage. Theoretical predictions of the effects of parameters such as bulk powder properties and the extent of load distribution on agglomerate strength are presented from the analysis.  相似文献   

6.
Low-rate dynamic contact angles of a large number of liquids were measured on a poly(ethyl methacrylate) (PEMA) polymer using an automated axisymmetric drop shape analysis profile (ADSA-P). The results suggested that not all experimental contact angles can be used for the interpretation in terms of solid surface tensions: eight liquids yielded non-constant contact angles and/or dissolved the polymer on contact. From the experimental contact angles of the remaining four liquids, we found that the liquid-vapor surface tension times the cosine of the contact angle changes smoothly with the liquid-vapor surface tension, i.e. γlv cos ζ depends only on γlv for a given solid surface (or solid surface tension). This contact angle pattern is again in harmony with those from other methacrylate polymer surfaces of different compositions and side-chains. The solid-vapor surface tension of PEMA calculated from the equation-of-state approach for solid-liquid interfacial tensions was found to be 33.6 ± 0.5 mJ/m2 from the experimental contact angles of the four liquids. The experimental results also suggested that surface tension component approaches do not reflect physical reality. In particular, experimental contact angles of polar and nonpolar liquids on polar methacrylate polymers were employed to determine solid surface tension and solid surface tension components. Contrary to the results obtained from the equation-of-state approach, we obtained inconsistent values from the Lifshitz-van der Waals/acid-base (van Oss and Good) approach using the same sets of experimental contact angles.  相似文献   

7.
The strength properties of fibers made from polyimideamide (PIA) nanocomposite were investigated and the effect of the presence of MMT in the fiber‐forming polymer on the porous structure and supermolecular structure of fibers was analyzed. It was found that lower strength properties (tenacity, elongation at break) of PIA nanocomposite fibers, as compared with those ones of fibers without montmorillonite (MMT), are connected with a lower deformability of the polymer during drawing stage and the collapse of MMT galleries, confirmed by WAXS investigations. This results in the formation of agglomerates that are weakly connected with the fiber‐forming polymer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 339–344, 2007  相似文献   

8.
A Die Pressing Test for the Estimation of Agglomerate Strength   总被引:1,自引:0,他引:1  
A die pressing test was developed for quick and inexpensive estimation of the agglomerate strength of ceramic powders. The critical nominal pressure ( p c) at which contact areas between agglomerates start to increase rapidly was found from the relationship between change in sample height and applied pressure in uniaxial single-ended die pressing. A quantitative microscopic method was used for measuring the area fraction (Ψ) of agglomerates which transmits the force through the assembly. A die pressing agglomerate strength, σd, is defined as σd= 0.7 p c/Ψ. This strength was compared with the agglomerate tensile strength obtained from single agglomerate diametral compression tests and found to be 50% higher than the latter because of multipoint loading. A suggested guideline is that the mean agglomerate tensile strength is approximately 52% of p c determined in a die pressing test for spherical agglomerates. In addition to agglomerate tensile strength, the mean agglomerate size, the interior macropore structure of agglomerates, as well as the packing efficiencies between and inside agglomerates can be estimated by the procedure.  相似文献   

9.
The effect of the shear thinning behavior and elasticity of polymer solutions on the dynamic contact angles are investigated. Under dynamic conditions, the contact angle of a liquid on a solid surface changes significantly with the substrate velocity from its equilibrium value. The dynamic contact angles for polyethylene oxide (PEO) solutions of two molecular weights 3 × 105 and 4 × 106 have been measured using a polyethylene terephthalate (PET) plate. The three‐parameter Ellis model to fit the rheological data to obtain shear thinning power n, characteristic shear stress, and the zero‐shear viscosity is used. The theory indicates that dynamic contact angles follow power law in this instance instead of showing Newtonian behavior with zero‐shear viscosity when the shear thinning effects are considered. The elastic effect becomes important at larger polymer concentrations that reduces the dependence on capillary number, that is, reduces n keeping with the experiments. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2533–2541, 2016  相似文献   

10.
The individual effects of heterogeneity and roughness on contact angles have been repeatedly analysed in the literature, but the application of the accepted models to practical situations is often not correctly performed. In the present paper the combined effects of roughness and heterogeneity on the contact angles of water on stone surfaces protected by a hydrophobic polymer coating are considered. Two different kinds of calcareous stone with different surface roughnesses and porosities were protected against the effect of water absorption by two different polymer coatings. The contact angles of water on the protected stone surfaces were measured by the Wilhelmy and the sessile drop techniques. A comparison of the results obtained shows not only the limits of the static sessile drop technique, but also the combined effect of roughness and heterogeneity. Some considerations are developed on the application of commonly accepted models to surfaces with a combination of roughness and heterogeneity. Some other results obtained with techniques such as roughness measurements, mercury porosimetry, energy dispersive X-ray spectroscopy (EDXS), thermogravimetric analysis (TGA), water absorption by capillarity experiments (WAC), all able to show the structure and properties of the obtained films, are also compared with those obtained from contact angle measurements. It is concluded that the static contact angle is not well correlated with the degree of protection; on the contrary, the receding contact angles are well correlated with the degree of protection actually obtained. An ideal protecting agent should have a receding contact angle greater than 90°.  相似文献   

11.
In order to characterize a solid surface, the commonly used approach is to measure the advancing and receding contact angles, i.e., the contact angle hysteresis. However, often an estimate of the average wettability of the solid–liquid system is required, which involves both the dry and wetted states of the surface. In this work, we measured advancing and receding contact angles on six polymer surfaces (polystyrene, poly(ethylene terephthalate), poly(methyl methacrylate), polycarbonate, unplasticized poly(vinyl chloride), and poly(tetrafluoroethylene)) with water, ethylene glycol and formamide using the sessile drop and captive bubble methods. We observed a general disagreement between these two methods in the advancing and receding contact angles values and the average contact angle determined separately by each method, although the contact angle hysteresis range mostly agreed. Surface mobility, swelling or liquid penetration might explain this behaviour. However, we found that the 'cross' averages of the advancing and receding angles coincided. This finding suggests that the cross-averaged angle might be a meaningful contact angle for polymer–liquid systems. Hence, we recommend using both the sessile drop and captive bubble methods.  相似文献   

12.
Ultra-thin films of cationic amphiphilic block and statistical copolymers were applied on silica surfaces from aqueous solutions through electrostatic interactions, and the resulting modification in the wettability of the surfaces was studied. A copolymer series from 2-(dimethylamino)ethyl methacrylate with methyl methacrylate and butyl methacrylate was polymerized by ATRP. Subsequently, the conformation of the polymers in aqueous solutions was studied by surface tension measurements, dynamic light scattering, 1H NMR and cryogenic transmission electron microscopy. Unimeric conformation, equilibrium micelles or frozen micellar structures were observed, depending on polymer composition and the ionic strength of the solution. The polymers were applied on silica from aqueous solutions by either spin coating or adsorption. The formed ultra-thin film surfaces were studied by AFM and water contact angle measurements. The spin-coated surfaces were highly hydrophilic with rapidly dropping contact angles, whereas the surfaces prepared by adsorption had stable water contact angles between 30-60°, depending on polymer. The difference between the spin-coated and adsorbed surfaces is explained by the formation of a monolayer in the adsorbed surfaces.  相似文献   

13.
The effects of compatibility of tackifier with polymer matrix and mixing weight ratio of triblock/diblock copolymers as the matrix on the adhesion property and phase structure of tackifier‐added polystryrene triblock/diblock copolymer blends were investigated. For this purpose, polystyrene‐block‐polyisoprene‐block‐polystyrene triblock and polystyrene‐block‐polyisoprene diblock copolymers were used and the diblock weight ratio in the blend was varied from 0 to 1. Spherical polystyrene domains with a mean size of about 20 nm were dispersed in the polyisoprene (PI) continuous phase. In the case of the hydrogenated cycloaliphatic resin as tackifier having a good compatibility with PI and a poor compatibility with polystyrene, the peel strength increased with an increase of the tackifier content, and the degree of increase became significant above 40 wt % of tackifier. It was found that the nanometer‐sized agglomerates of tackifier in the PI matrix were formed and the distance between the nearest neighbors of agglomerates was about 15 nm from SAXS measurement. The peel strength increased with an increase of the nanometer‐sized agglomerates of tackifier from TEM observation. On the other hand, in the case of the rosin phenolic resin as tackifier having a good compatibility with both polystyrene and PI, the peel strength increased effectively at the lower tackifier content, while no significant increase at higher tackifier content was observed. The agglomerates of tackifier were never confirmed in this system. The higher peel strength was obtained at the diblock weight ratio in the blend of 0.5–0.7 for both tackifier‐added systems. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Low-rate dynamic contact angles of 13 liquids on a polystyrene polymer are measured by an automated axisymmetric drop shape analysis – profile (ADSA-P). It is found that 7 liquids yielded non-constant contact angles, and/or dissolved the polymer on contact. From the experimental contact angles of the other 6 liquids, it is found that the liquid-vapor surface tension times cosine of the contact angle changes smoothly with the liquid-vapor surface tension, i.e. γlvcosθ depends only on γlv for a given solid surface (or solid surface tension). This contact angle pattern is in harmony with those from other inert and non-inert (polar and non-polar) surfaces (7–13, 24–26). The solid-vapor surface tension calculated from the equation-of-state approach for solid-liquid interfacial tensions (33) is found to be 29.8 mJ/m2, with a 95% confidence limit of ±0.5 mJ/m2 from the experimental contact angles of 6 liquids.  相似文献   

15.
A thermodynamic model was used to predict the morphology of hybrid multicomponent polymer blend systems. Two systems were studied, both including two noncompatible polymers, a third compatibilizer polymer and layered, organo‐treated clays. The polar and nonpolar contributions of the surface energies of the components of the systems were calculated using measurements of the contact angles. The morphology of the multicomponent systems and the relative position of the organo‐clays within them, were predicted by calculating the interaction energies between the different components of the system and evaluating these values according to the Vaia and Giannelis thermodynamic model for polymer melt intercalation in organically modified layered silicates. The experimental results show good correlation with the prediction that the organo‐clays will have higher affinity to the compatibilizer polymer component situated at the interface between the two noncompatible blend components. In addition, the presence of the organo‐clays in this interface was found to have a significant additional compatibilizing effect between the two polymer phases. The results presented in this work support the idea that hybrid formation via polymer melt intercalation depends mostly on energetic factors that can be determined from surface energies of polymers and organo‐modified layered silicates, also in the case of multiphase polymer system. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

16.
TATB/氟聚合物塑料粘结炸药的表(界)面特性研究   总被引:2,自引:0,他引:2  
测量了不同偶联剂处理的TATB和常用粘结剂的接触角,根据几何平均法、调和平均法和调和平均方程计算了TATB基塑料粘结炸药的表(界)面特性参数,并利用XPS对TATB与高聚物粘结剂的界面特性进行了分析。实验结果表明,F2314作粘结剂可实现与TATB的较佳粘结;接触角法评价偶联剂对TATB的改性效果是可行的;TATB与F2314间的界面作用力主要是分子间的范德华力。  相似文献   

17.
Results of computer simulation of the packing of particles in compacts from agglomerated powders are presented. The effect of the characteristics of agglomerated powders, such as the number of particles in the agglomerates, the size distribution of agglomerates, and the volume share of the fine fraction (individual particles) on the factors that determine the sinterability of compacts, i.e., the density, the mean number of contacts per particle, and the mean size and the mean coordination number of the pores, is investigated. It is established that compared to compacts from individual particles the presence of agglomerates sharply worsens the packing characteristics. The worst effect is due to agglomerates containing less that 30 – 40 particles. The packing characteristics can be improved by using powders with a wide size distribution of agglomerates or by adding unagglomerated particles. It is interesting that computer models of powder compacts can be used for predicting the strength properties of the materials sintered from these powders. Data on the influence of the packing characteristics on the mean strength and the Weibull modulus are presented.Translated from Ogneupory, No. 4, pp. 14–17, April, 1995.  相似文献   

18.
The strength of agglomerates of nickel flash furnace concentrate and dust was determined from experimental observations of agglomerates forming under controlled conditions, combined with mathematical equations from the literature. It was found that the agglomerates had a tensile strength ranging from 0.01 Pa to 38.7 Pa, while inter-particle forces ranged from 2.2 × 10− 12 N to 1.5 × 10− 10 N. These values were compared to the expected magnitude of van der Waals, electrostatic, magnetic and capillary forces within the agglomerates, and it was found that both electrostatic and van der Waals forces are likely to contribute to the cohesion of agglomerates, although sub-micron particles and the presence of sufficiently large asperities on the surface of particles limit the magnitude of van der Waals forces. Magnetic forces are large enough to contribute to the cohesion of dust agglomerates, which is in keeping with the high magnetite content of the recycle dust. It is postulated that electrostatic forces, acting over a longer range than van der Waals forces, may be responsible for initially bringing particles together. The methodology for determining inter-particle forces can be applied to the computer modelling of flash smelting systems, as well as other gas/particle systems such as fluidized beds.  相似文献   

19.
Agglomeration is a common phenomenon in many processes. The mechanical properties of agglomerates strongly depend on their structures. This paper presents a numerical study of the agglomeration of fine particles down to 1 μm in size based on the discrete element method. The agglomerates were formed with particles initially generated randomly in a spherical space and then packed under an assumed centripetal force. Agglomerate structure, packing density, coordination number and tensile strength were analysed with particular reference to the effect of particle size associated with the van der Waals attraction. The results showed that both the packing density and coordination number of the agglomerates decay exponentially to their limits as agglomerate size increases. The tensile strength of the agglomerates was calculated from the simulations and shown to decrease with the increase of particle size. The strength was also estimated from the Rumpf model supported by the empirical equations formulated based on the present simulation results. The good agreement between the results from the simulations and the estimation indicates that the equations are useful to facilitate engineering applications.  相似文献   

20.
Young's equation describes the wetting phenomenon in terms of the contact angle between a liquid and a solid surface. However, the contact angle is not the only parameter that defines liquid–solid interactions, an additional parameter related to the adhesion between the liquid drop and the solid surface is also of importance in cases where liquid sliding is involved. It is postulated that wetting which is related to the contact angle, and interfacial adhesion, which is related to the sliding angle, are interdependent phenomena and have to be considered simultaneously. A variety of models that relate the sliding angle to the forces developed along the contact periphery between a liquid drop and a solid surface have been proposed in the literature. Here, a modified model is proposed that quantifies the drop-sliding phenomenon, based also on the interfacial adhesion that develops across the contact area of the liquid/solid interface. Consequently, an interfacial adhesion strength parameter can be defined depending on the mass of the drop, the contact angle and the sliding angle. To verify the proposed approach the adhesion strength parameter has been calculated, based on experimental results, for a number of polymer surfaces and has been correlated with their composition and structure. The interaction strength parameter can be calculated for any smooth surface from measurements of the contact and the sliding angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号